Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313442985> ?p ?o ?g. }
- W4313442985 endingPage "105631" @default.
- W4313442985 startingPage "105631" @default.
- W4313442985 abstract "Digital volume correlation (DVC) enables to evaluate the ability of μFE models in predicting experimental results on the mesoscale. In this study predicted displacement fields of three different linear and materially nonlinear μFE simulation methods were compared to DVC measured displacement fields at specific load steps in the elastic regime (StepEl) and after yield (StepUlt). Five human trabecular bone biopsies from a previous study were compressed in several displacement steps until failure. At every compression step, μCT images (resolution: 36 μm) were recorded. A global DVC algorithm was applied to compute the displacement fields at all loading steps. The unloaded 3D images were then used to generate homogeneous, isotropic, linear and materially nonlinear μFE models. Three different μFE simulation methods were used: linear (L), nonlinear (NL), and nonlinear stepwise (NLS). Regarding L and NL, the boundary conditions were derived from the interpolated displacement fields at StepEl and StepUlt, while for the NLS method nonlinear changes of the boundary conditions of the experiments were captured using the DVC displacement field of every available load step until StepEl and StepUlt. The predicted displacement fields of all μFE simulation methods were in good agreement with the DVC measured displacement fields (individual specimens: R2>0.83 at StepEl and R2>0.59 at StepUlt; pooled data: R2>0.97 at StepEl and R2>0.92 at StepUlt). At StepEl, all three simulation methods showed similar intercepts, slopes, and coefficients of determination while the nonlinear μFE models improved the prediction of the displacement fields slightly in all Cartesian directions at StepUlt (individual specimens: L: R2>0.59 and NL, NLS: R2>0.68; pooled data: L: R2>0.92 and NL, NLS: R2>0.94). Damaged/overstrained elements in L, NL, and NLS occurred at similar locations but the number of overstrained elements was overestimated when using the L simulation method. Considering the increased solving time of the nonlinear μFE models as well as the acceptable performance in displacement prediction of the linear μFE models, one can conclude that for similar use cases linear μFE models represent the best compromise between computational effort and accuracy of the displacement field predictions." @default.
- W4313442985 created "2023-01-06" @default.
- W4313442985 creator A5040691815 @default.
- W4313442985 creator A5065532820 @default.
- W4313442985 creator A5073545180 @default.
- W4313442985 creator A5090776949 @default.
- W4313442985 date "2023-02-01" @default.
- W4313442985 modified "2023-10-15" @default.
- W4313442985 title "Comparison of linear and nonlinear stepwise μFE displacement predictions to digital volume correlation measurements of trabecular bone biopsies" @default.
- W4313442985 cites W136205507 @default.
- W4313442985 cites W1434415805 @default.
- W4313442985 cites W1516411265 @default.
- W4313442985 cites W1576167617 @default.
- W4313442985 cites W1580480295 @default.
- W4313442985 cites W1842296077 @default.
- W4313442985 cites W1971428592 @default.
- W4313442985 cites W1975161834 @default.
- W4313442985 cites W1975310744 @default.
- W4313442985 cites W1984284214 @default.
- W4313442985 cites W1986094038 @default.
- W4313442985 cites W2000457026 @default.
- W4313442985 cites W2027153420 @default.
- W4313442985 cites W2066646366 @default.
- W4313442985 cites W2090679788 @default.
- W4313442985 cites W2095150495 @default.
- W4313442985 cites W2100597728 @default.
- W4313442985 cites W2116965611 @default.
- W4313442985 cites W2119673331 @default.
- W4313442985 cites W2128569032 @default.
- W4313442985 cites W2137438672 @default.
- W4313442985 cites W2145069783 @default.
- W4313442985 cites W2148675520 @default.
- W4313442985 cites W2151813340 @default.
- W4313442985 cites W2194763419 @default.
- W4313442985 cites W2508686994 @default.
- W4313442985 cites W2519046255 @default.
- W4313442985 cites W2559967153 @default.
- W4313442985 cites W2605884313 @default.
- W4313442985 cites W2650556801 @default.
- W4313442985 cites W2768465218 @default.
- W4313442985 cites W2809220324 @default.
- W4313442985 cites W2946184474 @default.
- W4313442985 cites W2955852355 @default.
- W4313442985 cites W2960724426 @default.
- W4313442985 cites W2990073486 @default.
- W4313442985 cites W3020993233 @default.
- W4313442985 cites W3093242327 @default.
- W4313442985 cites W3093338287 @default.
- W4313442985 cites W3103145119 @default.
- W4313442985 cites W3118270956 @default.
- W4313442985 cites W3120802817 @default.
- W4313442985 cites W3207416952 @default.
- W4313442985 cites W4281685458 @default.
- W4313442985 doi "https://doi.org/10.1016/j.jmbbm.2022.105631" @default.
- W4313442985 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36592570" @default.
- W4313442985 hasPublicationYear "2023" @default.
- W4313442985 type Work @default.
- W4313442985 citedByCount "1" @default.
- W4313442985 countsByYear W43134429852023 @default.
- W4313442985 crossrefType "journal-article" @default.
- W4313442985 hasAuthorship W4313442985A5040691815 @default.
- W4313442985 hasAuthorship W4313442985A5065532820 @default.
- W4313442985 hasAuthorship W4313442985A5073545180 @default.
- W4313442985 hasAuthorship W4313442985A5090776949 @default.
- W4313442985 hasBestOaLocation W43134429851 @default.
- W4313442985 hasConcept C107551265 @default.
- W4313442985 hasConcept C115635565 @default.
- W4313442985 hasConcept C120665830 @default.
- W4313442985 hasConcept C121332964 @default.
- W4313442985 hasConcept C135628077 @default.
- W4313442985 hasConcept C15744967 @default.
- W4313442985 hasConcept C158622935 @default.
- W4313442985 hasConcept C159985019 @default.
- W4313442985 hasConcept C180016635 @default.
- W4313442985 hasConcept C184050105 @default.
- W4313442985 hasConcept C192562407 @default.
- W4313442985 hasConcept C29660869 @default.
- W4313442985 hasConcept C33923547 @default.
- W4313442985 hasConcept C542102704 @default.
- W4313442985 hasConcept C57879066 @default.
- W4313442985 hasConcept C62520636 @default.
- W4313442985 hasConcept C97355855 @default.
- W4313442985 hasConceptScore W4313442985C107551265 @default.
- W4313442985 hasConceptScore W4313442985C115635565 @default.
- W4313442985 hasConceptScore W4313442985C120665830 @default.
- W4313442985 hasConceptScore W4313442985C121332964 @default.
- W4313442985 hasConceptScore W4313442985C135628077 @default.
- W4313442985 hasConceptScore W4313442985C15744967 @default.
- W4313442985 hasConceptScore W4313442985C158622935 @default.
- W4313442985 hasConceptScore W4313442985C159985019 @default.
- W4313442985 hasConceptScore W4313442985C180016635 @default.
- W4313442985 hasConceptScore W4313442985C184050105 @default.
- W4313442985 hasConceptScore W4313442985C192562407 @default.
- W4313442985 hasConceptScore W4313442985C29660869 @default.
- W4313442985 hasConceptScore W4313442985C33923547 @default.
- W4313442985 hasConceptScore W4313442985C542102704 @default.
- W4313442985 hasConceptScore W4313442985C57879066 @default.
- W4313442985 hasConceptScore W4313442985C62520636 @default.