Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313590966> ?p ?o ?g. }
- W4313590966 endingPage "21" @default.
- W4313590966 startingPage "21" @default.
- W4313590966 abstract "Features extracted from the wavelet transform coefficient matrix are widely used in the design of machine learning models to classify event-related potential (ERP) and electroencephalography (EEG) signals in a wide range of brain activity research and clinical studies. This novel study is aimed at dramatically improving the performance of such wavelet-based classifiers by exploiting information offered by the cone of influence (COI) of the continuous wavelet transform (CWT). The COI is a boundary that is superimposed on the wavelet scalogram to delineate the coefficients that are accurate from those that are inaccurate due to edge effects. The features derived from the inaccurate coefficients are, therefore, unreliable. In this study, it is hypothesized that the classifier performance would improve if unreliable features, which are outside the COI, are zeroed out, and the performance would improve even further if those features are cropped out completely. The entire, zeroed out, and cropped scalograms are referred to as the “same” (S)-scalogram, “zeroed out” (Z)-scalogram, and the “valid” (V)-scalogram, respectively. The strategy to validate the hypotheses is to formulate three classification approaches in which the feature vectors are extracted from the (a) S-scalogram in the standard manner, (b) Z-scalogram, and (c) V-scalogram. A subsampling strategy is developed to generate small-sample ERP ensembles to enable customized classifier design for single subjects, and a strategy is developed to select a subset of channels from multiple ERP channels. The three scalogram approaches are implemented using support vector machines, random forests, k-nearest neighbor, multilayer perceptron neural networks, and deep learning convolution neural networks. In order to validate the performance hypotheses, experiments are designed to classify the multi-channel ERPs of five subjects engaged in distinguishing between synonymous and non-synonymous word pairs. The results confirm that the classifiers using the Z-scalogram features outperform those using the S-scalogram features, and the classifiers using the V-scalogram features outperform those using the Z-scalogram features. Most importantly, the relative improvement of the V-scalogram classifiers over the standard S-scalogram classifiers is dramatic. Additionally, enabling the design of customized classifiers for individual subjects is an important contribution to ERP/EEG-based studies and diagnoses of patient-specific disorders." @default.
- W4313590966 created "2023-01-06" @default.
- W4313590966 creator A5027853768 @default.
- W4313590966 creator A5053352654 @default.
- W4313590966 creator A5055462963 @default.
- W4313590966 date "2022-12-22" @default.
- W4313590966 modified "2023-10-14" @default.
- W4313590966 title "Exploiting the Cone of Influence for Improving the Performance of Wavelet Transform-Based Models for ERP/EEG Classification" @default.
- W4313590966 cites W1603549581 @default.
- W4313590966 cites W1877153489 @default.
- W4313590966 cites W1965369410 @default.
- W4313590966 cites W1965551074 @default.
- W4313590966 cites W1974580394 @default.
- W4313590966 cites W2021589706 @default.
- W4313590966 cites W2028818275 @default.
- W4313590966 cites W2034139177 @default.
- W4313590966 cites W2034832343 @default.
- W4313590966 cites W2063411627 @default.
- W4313590966 cites W2067932878 @default.
- W4313590966 cites W2076063813 @default.
- W4313590966 cites W2081808366 @default.
- W4313590966 cites W2104794460 @default.
- W4313590966 cites W2112225127 @default.
- W4313590966 cites W2116385707 @default.
- W4313590966 cites W2118139515 @default.
- W4313590966 cites W2121649778 @default.
- W4313590966 cites W2132984323 @default.
- W4313590966 cites W2135237510 @default.
- W4313590966 cites W2140428231 @default.
- W4313590966 cites W2152328854 @default.
- W4313590966 cites W2152941701 @default.
- W4313590966 cites W2162136094 @default.
- W4313590966 cites W2166385084 @default.
- W4313590966 cites W2168717169 @default.
- W4313590966 cites W2206530433 @default.
- W4313590966 cites W2324335491 @default.
- W4313590966 cites W2410516005 @default.
- W4313590966 cites W2602063239 @default.
- W4313590966 cites W2724626982 @default.
- W4313590966 cites W2903709507 @default.
- W4313590966 cites W2919403121 @default.
- W4313590966 cites W2945968413 @default.
- W4313590966 cites W2951248525 @default.
- W4313590966 cites W2994422921 @default.
- W4313590966 cites W2996722826 @default.
- W4313590966 cites W3003523273 @default.
- W4313590966 cites W3006314847 @default.
- W4313590966 cites W3010660225 @default.
- W4313590966 cites W3015405005 @default.
- W4313590966 cites W3034066812 @default.
- W4313590966 cites W3124925700 @default.
- W4313590966 cites W3133478178 @default.
- W4313590966 cites W3144711596 @default.
- W4313590966 cites W3209432345 @default.
- W4313590966 cites W3215417281 @default.
- W4313590966 cites W4200065462 @default.
- W4313590966 cites W4210900955 @default.
- W4313590966 cites W4220842428 @default.
- W4313590966 cites W4223919817 @default.
- W4313590966 cites W4255272544 @default.
- W4313590966 cites W4284896738 @default.
- W4313590966 cites W4292399430 @default.
- W4313590966 cites W5770538 @default.
- W4313590966 cites W80204474 @default.
- W4313590966 doi "https://doi.org/10.3390/brainsci13010021" @default.
- W4313590966 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36672003" @default.
- W4313590966 hasPublicationYear "2022" @default.
- W4313590966 type Work @default.
- W4313590966 citedByCount "2" @default.
- W4313590966 countsByYear W43135909662023 @default.
- W4313590966 crossrefType "journal-article" @default.
- W4313590966 hasAuthorship W4313590966A5027853768 @default.
- W4313590966 hasAuthorship W4313590966A5053352654 @default.
- W4313590966 hasAuthorship W4313590966A5055462963 @default.
- W4313590966 hasBestOaLocation W43135909661 @default.
- W4313590966 hasConcept C118552586 @default.
- W4313590966 hasConcept C12267149 @default.
- W4313590966 hasConcept C153180895 @default.
- W4313590966 hasConcept C154945302 @default.
- W4313590966 hasConcept C15744967 @default.
- W4313590966 hasConcept C196216189 @default.
- W4313590966 hasConcept C28490314 @default.
- W4313590966 hasConcept C41008148 @default.
- W4313590966 hasConcept C47432892 @default.
- W4313590966 hasConcept C50644808 @default.
- W4313590966 hasConcept C522805319 @default.
- W4313590966 hasConcept C60908668 @default.
- W4313590966 hasConcept C95623464 @default.
- W4313590966 hasConceptScore W4313590966C118552586 @default.
- W4313590966 hasConceptScore W4313590966C12267149 @default.
- W4313590966 hasConceptScore W4313590966C153180895 @default.
- W4313590966 hasConceptScore W4313590966C154945302 @default.
- W4313590966 hasConceptScore W4313590966C15744967 @default.
- W4313590966 hasConceptScore W4313590966C196216189 @default.
- W4313590966 hasConceptScore W4313590966C28490314 @default.
- W4313590966 hasConceptScore W4313590966C41008148 @default.
- W4313590966 hasConceptScore W4313590966C47432892 @default.
- W4313590966 hasConceptScore W4313590966C50644808 @default.