Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323040780> ?p ?o ?g. }
- W4323040780 endingPage "128005" @default.
- W4323040780 startingPage "128005" @default.
- W4323040780 abstract "The investigations of biomass pyrolysis kinetics are traditionally accomplished through experiments at the expense of extensive resources worldwide. The estimation of activation energy (Eα) of biomass pyrolysis is a crucial and essential aspect of process optimization and control. In this study, machine learning methods were applied for the first time to predict the Eα values of the pyrolysis process based on the preliminary analysis of the biomass feedstocks and conversion degree (α). A total of 1523 sets of Eα values calculated via three frequently-used model-free kinetic methods were collected from literature and modeled by using artificial neural network (ANN), random forest (RF), and support vector machine (SVM) algorithms. The training and optimization of the models showed that the RF algorithm exhibited satisfactory accuracy, making it a promising tool for a quick prediction of Eα values. Moreover, the feature importance analysis indicated that Eα mainly depended on the α, C content, and ash content of the biomass. This work suggested the effective application of machine learning in determining Eα accurately, which could help in understanding the pyrolysis mechanisms, reducing the experimental workload, and improving the optimization of the pyrolysis process." @default.
- W4323040780 created "2023-03-04" @default.
- W4323040780 creator A5020844052 @default.
- W4323040780 creator A5076289776 @default.
- W4323040780 creator A5077671259 @default.
- W4323040780 creator A5085500621 @default.
- W4323040780 creator A5086427096 @default.
- W4323040780 creator A5086665505 @default.
- W4323040780 date "2023-07-01" @default.
- W4323040780 modified "2023-09-26" @default.
- W4323040780 title "Application of machine learning methods for lignocellulose biomass pyrolysis: Activation energy prediction from preliminary analysis and conversion degree" @default.
- W4323040780 cites W1964596848 @default.
- W4323040780 cites W2002451654 @default.
- W4323040780 cites W2072969581 @default.
- W4323040780 cites W2345585299 @default.
- W4323040780 cites W2512335297 @default.
- W4323040780 cites W2594434222 @default.
- W4323040780 cites W2624775565 @default.
- W4323040780 cites W2778992568 @default.
- W4323040780 cites W2795996952 @default.
- W4323040780 cites W2900551188 @default.
- W4323040780 cites W2910222073 @default.
- W4323040780 cites W2943185736 @default.
- W4323040780 cites W2949006411 @default.
- W4323040780 cites W2962872018 @default.
- W4323040780 cites W2964169441 @default.
- W4323040780 cites W2979867135 @default.
- W4323040780 cites W2998788773 @default.
- W4323040780 cites W3001888871 @default.
- W4323040780 cites W3011903946 @default.
- W4323040780 cites W3024521084 @default.
- W4323040780 cites W3081529317 @default.
- W4323040780 cites W3087916121 @default.
- W4323040780 cites W3112882234 @default.
- W4323040780 cites W3115428667 @default.
- W4323040780 cites W3132090403 @default.
- W4323040780 cites W3133885865 @default.
- W4323040780 cites W3156469652 @default.
- W4323040780 cites W3180052000 @default.
- W4323040780 cites W3184804865 @default.
- W4323040780 cites W3185819222 @default.
- W4323040780 cites W3197038783 @default.
- W4323040780 cites W3202854056 @default.
- W4323040780 cites W3210447428 @default.
- W4323040780 cites W3211431567 @default.
- W4323040780 cites W3216448540 @default.
- W4323040780 cites W3217091379 @default.
- W4323040780 cites W4200051822 @default.
- W4323040780 cites W4224129039 @default.
- W4323040780 cites W4224216510 @default.
- W4323040780 cites W4229333456 @default.
- W4323040780 cites W4281669258 @default.
- W4323040780 cites W4281923223 @default.
- W4323040780 doi "https://doi.org/10.1016/j.fuel.2023.128005" @default.
- W4323040780 hasPublicationYear "2023" @default.
- W4323040780 type Work @default.
- W4323040780 citedByCount "1" @default.
- W4323040780 countsByYear W43230407802023 @default.
- W4323040780 crossrefType "journal-article" @default.
- W4323040780 hasAuthorship W4323040780A5020844052 @default.
- W4323040780 hasAuthorship W4323040780A5076289776 @default.
- W4323040780 hasAuthorship W4323040780A5077671259 @default.
- W4323040780 hasAuthorship W4323040780A5085500621 @default.
- W4323040780 hasAuthorship W4323040780A5086427096 @default.
- W4323040780 hasAuthorship W4323040780A5086665505 @default.
- W4323040780 hasConcept C111368507 @default.
- W4323040780 hasConcept C111919701 @default.
- W4323040780 hasConcept C115540264 @default.
- W4323040780 hasConcept C119857082 @default.
- W4323040780 hasConcept C121332964 @default.
- W4323040780 hasConcept C12267149 @default.
- W4323040780 hasConcept C127313418 @default.
- W4323040780 hasConcept C127413603 @default.
- W4323040780 hasConcept C154945302 @default.
- W4323040780 hasConcept C169258074 @default.
- W4323040780 hasConcept C186060115 @default.
- W4323040780 hasConcept C18762648 @default.
- W4323040780 hasConcept C21880701 @default.
- W4323040780 hasConcept C24890656 @default.
- W4323040780 hasConcept C2775997480 @default.
- W4323040780 hasConcept C36759035 @default.
- W4323040780 hasConcept C41008148 @default.
- W4323040780 hasConcept C42360764 @default.
- W4323040780 hasConcept C50644808 @default.
- W4323040780 hasConcept C78519656 @default.
- W4323040780 hasConcept C86803240 @default.
- W4323040780 hasConcept C98045186 @default.
- W4323040780 hasConceptScore W4323040780C111368507 @default.
- W4323040780 hasConceptScore W4323040780C111919701 @default.
- W4323040780 hasConceptScore W4323040780C115540264 @default.
- W4323040780 hasConceptScore W4323040780C119857082 @default.
- W4323040780 hasConceptScore W4323040780C121332964 @default.
- W4323040780 hasConceptScore W4323040780C12267149 @default.
- W4323040780 hasConceptScore W4323040780C127313418 @default.
- W4323040780 hasConceptScore W4323040780C127413603 @default.
- W4323040780 hasConceptScore W4323040780C154945302 @default.
- W4323040780 hasConceptScore W4323040780C169258074 @default.
- W4323040780 hasConceptScore W4323040780C186060115 @default.