Matches in SemOpenAlex for { <https://semopenalex.org/work/W4323977891> ?p ?o ?g. }
- W4323977891 endingPage "112714" @default.
- W4323977891 startingPage "112714" @default.
- W4323977891 abstract "The health condition of bearings was related to the operation status of mechanical equipment, and there were relatively few methods to recognize the severity of bearing faults. Although the Lempel-Ziv complexity (LZ complexity) has been proven to be effective in recognizing the bearing fault severity, the LZ was affected by noise. And the frequency band selection-based methods were used for noise reduction for LZ, which might cause the loss of frequency band information, and affect the accuracy of LZ. Aiming at this issue, this paper proposed a bearing fault severity recognition method based on manifold learning. Firstly, the original signal was reconstructed to high-dimensional phase space. Then, local tangent space alignment was used to extract effective signals aliased in noise. Finally, the LZ complexity was obtained according to the signal after noise reduction. The proposed method was verified by constructed data and the real experimental dataset of bearing, respectively. The results showed that the proposed method can be effectively used in the fault severity recognition of bearing." @default.
- W4323977891 created "2023-03-13" @default.
- W4323977891 creator A5001733393 @default.
- W4323977891 creator A5051847633 @default.
- W4323977891 creator A5053360857 @default.
- W4323977891 creator A5066188128 @default.
- W4323977891 date "2023-05-01" @default.
- W4323977891 modified "2023-10-18" @default.
- W4323977891 title "Manifold learning and Lempel-Ziv complexity-based fault severity recognition method for bearing" @default.
- W4323977891 cites W1966482833 @default.
- W4323977891 cites W1979431208 @default.
- W4323977891 cites W1985002319 @default.
- W4323977891 cites W1998813289 @default.
- W4323977891 cites W2019505419 @default.
- W4323977891 cites W2050941243 @default.
- W4323977891 cites W2053347934 @default.
- W4323977891 cites W2077770566 @default.
- W4323977891 cites W2079261831 @default.
- W4323977891 cites W2093849451 @default.
- W4323977891 cites W2155013614 @default.
- W4323977891 cites W2521543067 @default.
- W4323977891 cites W2654064938 @default.
- W4323977891 cites W2692693673 @default.
- W4323977891 cites W2809680646 @default.
- W4323977891 cites W2810993408 @default.
- W4323977891 cites W3013476128 @default.
- W4323977891 cites W3033621048 @default.
- W4323977891 cites W3035770293 @default.
- W4323977891 cites W3097733991 @default.
- W4323977891 cites W3110782243 @default.
- W4323977891 cites W3121325595 @default.
- W4323977891 cites W3158410226 @default.
- W4323977891 cites W3196812216 @default.
- W4323977891 cites W3198086451 @default.
- W4323977891 cites W3207306938 @default.
- W4323977891 cites W3211311145 @default.
- W4323977891 cites W3212257252 @default.
- W4323977891 cites W4200339573 @default.
- W4323977891 cites W4200616694 @default.
- W4323977891 cites W4206482568 @default.
- W4323977891 cites W4210624384 @default.
- W4323977891 cites W4213243556 @default.
- W4323977891 cites W4214641881 @default.
- W4323977891 cites W4214745720 @default.
- W4323977891 cites W4220949085 @default.
- W4323977891 cites W4223427002 @default.
- W4323977891 cites W4224921396 @default.
- W4323977891 cites W4225276437 @default.
- W4323977891 cites W4280497029 @default.
- W4323977891 cites W4281550753 @default.
- W4323977891 cites W4283019299 @default.
- W4323977891 cites W4283770904 @default.
- W4323977891 cites W4285252762 @default.
- W4323977891 cites W4285388439 @default.
- W4323977891 cites W4289836574 @default.
- W4323977891 cites W4290075572 @default.
- W4323977891 cites W4291010889 @default.
- W4323977891 cites W4291018250 @default.
- W4323977891 cites W4292387251 @default.
- W4323977891 cites W4293243935 @default.
- W4323977891 cites W4293421554 @default.
- W4323977891 doi "https://doi.org/10.1016/j.measurement.2023.112714" @default.
- W4323977891 hasPublicationYear "2023" @default.
- W4323977891 type Work @default.
- W4323977891 citedByCount "1" @default.
- W4323977891 countsByYear W43239778912023 @default.
- W4323977891 crossrefType "journal-article" @default.
- W4323977891 hasAuthorship W4323977891A5001733393 @default.
- W4323977891 hasAuthorship W4323977891A5051847633 @default.
- W4323977891 hasAuthorship W4323977891A5053360857 @default.
- W4323977891 hasAuthorship W4323977891A5066188128 @default.
- W4323977891 hasConcept C111335779 @default.
- W4323977891 hasConcept C11413529 @default.
- W4323977891 hasConcept C115961682 @default.
- W4323977891 hasConcept C127313418 @default.
- W4323977891 hasConcept C127413603 @default.
- W4323977891 hasConcept C151876577 @default.
- W4323977891 hasConcept C153180895 @default.
- W4323977891 hasConcept C154945302 @default.
- W4323977891 hasConcept C163294075 @default.
- W4323977891 hasConcept C165205528 @default.
- W4323977891 hasConcept C175551986 @default.
- W4323977891 hasConcept C179799912 @default.
- W4323977891 hasConcept C199360897 @default.
- W4323977891 hasConcept C199978012 @default.
- W4323977891 hasConcept C2524010 @default.
- W4323977891 hasConcept C2779843651 @default.
- W4323977891 hasConcept C28490314 @default.
- W4323977891 hasConcept C33923547 @default.
- W4323977891 hasConcept C41008148 @default.
- W4323977891 hasConcept C529865628 @default.
- W4323977891 hasConcept C70518039 @default.
- W4323977891 hasConcept C78519656 @default.
- W4323977891 hasConcept C99498987 @default.
- W4323977891 hasConceptScore W4323977891C111335779 @default.
- W4323977891 hasConceptScore W4323977891C11413529 @default.
- W4323977891 hasConceptScore W4323977891C115961682 @default.
- W4323977891 hasConceptScore W4323977891C127313418 @default.