Matches in SemOpenAlex for { <https://semopenalex.org/work/W4367011774> ?p ?o ?g. }
- W4367011774 endingPage "121" @default.
- W4367011774 startingPage "111" @default.
- W4367011774 abstract "Stress is a condition that causes a specific physiologicsal response. Heart rate variability (HRV) is a critical aspect in identifying stress. It is crucial for those who want to keep track of their wellness. Currently, numerous research is being conducted on stress prediction from HRV. The existing works in this field cover different data sets to identify stress, where significantly few models can predict stress with high accuracy. This work combines two well-known stress prediction data sets comprising HRV features named WESAD and SWELL-KW to compare twelve classical machine learning models and hybrid models. Finally, it proposes a hybrid stress prediction model that combines Artificial Neural Network (ANN) with Naive Bayes (NB). The proposed model performed auspiciously, having an accuracy of 95.75% within only 0.80 s. A stress prediction framework is also suggested based on the findings." @default.
- W4367011774 created "2023-04-27" @default.
- W4367011774 creator A5006159694 @default.
- W4367011774 creator A5007903273 @default.
- W4367011774 creator A5027525633 @default.
- W4367011774 creator A5053123714 @default.
- W4367011774 creator A5057247142 @default.
- W4367011774 creator A5070138201 @default.
- W4367011774 date "2023-01-01" @default.
- W4367011774 modified "2023-09-25" @default.
- W4367011774 title "A Hybrid Approach for Stress Prediction from Heart Rate Variability" @default.
- W4367011774 cites W2026891775 @default.
- W4367011774 cites W2522453581 @default.
- W4367011774 cites W2767018745 @default.
- W4367011774 cites W2768956845 @default.
- W4367011774 cites W2894771803 @default.
- W4367011774 cites W2920971207 @default.
- W4367011774 cites W2947706773 @default.
- W4367011774 cites W2972945127 @default.
- W4367011774 cites W3007536397 @default.
- W4367011774 cites W3089526972 @default.
- W4367011774 cites W3090519764 @default.
- W4367011774 cites W3091643389 @default.
- W4367011774 cites W3091860120 @default.
- W4367011774 cites W3127786468 @default.
- W4367011774 cites W3134456151 @default.
- W4367011774 cites W3151064326 @default.
- W4367011774 cites W3154610942 @default.
- W4367011774 cites W3159597990 @default.
- W4367011774 cites W3159875375 @default.
- W4367011774 cites W3176221632 @default.
- W4367011774 cites W3184416411 @default.
- W4367011774 cites W3186593818 @default.
- W4367011774 cites W3192818153 @default.
- W4367011774 cites W3194074498 @default.
- W4367011774 cites W3199297386 @default.
- W4367011774 cites W3199364093 @default.
- W4367011774 cites W3209406277 @default.
- W4367011774 cites W3217064948 @default.
- W4367011774 cites W4200166643 @default.
- W4367011774 cites W4206440813 @default.
- W4367011774 cites W4206979879 @default.
- W4367011774 cites W4207012013 @default.
- W4367011774 cites W4226267190 @default.
- W4367011774 doi "https://doi.org/10.1007/978-981-19-5191-6_10" @default.
- W4367011774 hasPublicationYear "2023" @default.
- W4367011774 type Work @default.
- W4367011774 citedByCount "0" @default.
- W4367011774 crossrefType "book-chapter" @default.
- W4367011774 hasAuthorship W4367011774A5006159694 @default.
- W4367011774 hasAuthorship W4367011774A5007903273 @default.
- W4367011774 hasAuthorship W4367011774A5027525633 @default.
- W4367011774 hasAuthorship W4367011774A5053123714 @default.
- W4367011774 hasAuthorship W4367011774A5057247142 @default.
- W4367011774 hasAuthorship W4367011774A5070138201 @default.
- W4367011774 hasConcept C119857082 @default.
- W4367011774 hasConcept C12267149 @default.
- W4367011774 hasConcept C124101348 @default.
- W4367011774 hasConcept C126838900 @default.
- W4367011774 hasConcept C138885662 @default.
- W4367011774 hasConcept C154945302 @default.
- W4367011774 hasConcept C202444582 @default.
- W4367011774 hasConcept C21036866 @default.
- W4367011774 hasConcept C2777953023 @default.
- W4367011774 hasConcept C33923547 @default.
- W4367011774 hasConcept C41008148 @default.
- W4367011774 hasConcept C41895202 @default.
- W4367011774 hasConcept C45804977 @default.
- W4367011774 hasConcept C50644808 @default.
- W4367011774 hasConcept C52001869 @default.
- W4367011774 hasConcept C71635504 @default.
- W4367011774 hasConcept C71924100 @default.
- W4367011774 hasConcept C84393581 @default.
- W4367011774 hasConcept C9652623 @default.
- W4367011774 hasConceptScore W4367011774C119857082 @default.
- W4367011774 hasConceptScore W4367011774C12267149 @default.
- W4367011774 hasConceptScore W4367011774C124101348 @default.
- W4367011774 hasConceptScore W4367011774C126838900 @default.
- W4367011774 hasConceptScore W4367011774C138885662 @default.
- W4367011774 hasConceptScore W4367011774C154945302 @default.
- W4367011774 hasConceptScore W4367011774C202444582 @default.
- W4367011774 hasConceptScore W4367011774C21036866 @default.
- W4367011774 hasConceptScore W4367011774C2777953023 @default.
- W4367011774 hasConceptScore W4367011774C33923547 @default.
- W4367011774 hasConceptScore W4367011774C41008148 @default.
- W4367011774 hasConceptScore W4367011774C41895202 @default.
- W4367011774 hasConceptScore W4367011774C45804977 @default.
- W4367011774 hasConceptScore W4367011774C50644808 @default.
- W4367011774 hasConceptScore W4367011774C52001869 @default.
- W4367011774 hasConceptScore W4367011774C71635504 @default.
- W4367011774 hasConceptScore W4367011774C71924100 @default.
- W4367011774 hasConceptScore W4367011774C84393581 @default.
- W4367011774 hasConceptScore W4367011774C9652623 @default.
- W4367011774 hasLocation W43670117741 @default.
- W4367011774 hasOpenAccess W4367011774 @default.
- W4367011774 hasPrimaryLocation W43670117741 @default.
- W4367011774 hasRelatedWork W1470425429 @default.
- W4367011774 hasRelatedWork W2595988085 @default.