Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378468608> ?p ?o ?g. }
- W4378468608 endingPage "6478" @default.
- W4378468608 startingPage "6478" @default.
- W4378468608 abstract "The deep learning-based image segmentation approach has evolved into the mainstream of target detection and shape characterization in microscopic image analysis. However, the accuracy and generalizability of deep learning approaches are still hindered by the insufficient data problem that results from the high expense of human and material resources for microscopic image acquisition and annotation. Generally, image augmentation can increase the amount of data in a short time by means of mathematical simulation, and has become a necessary module for deep learning-based material microscopic image analysis. In this work, we first review the commonly used image augmentation methods and divide more than 60 basic image augmentation methods into eleven categories based on different implementation strategies. Secondly, we conduct experiments to verify the effectiveness of various basic image augmentation methods for the image segmentation task of two classical material microscopic images using evaluation metrics with different applicabilities. The U-Net model was selected as a representative benchmark model for image segmentation tasks, as it is the classic and most widely used model in this field. We utilize this model to verify the improvement of segmentation performance by various augmentation methods. Then, we discuss the advantages and applicability of various image augmentation methods in the material microscopic image segmentation task. The evaluation experiments and conclusions in this work can serve as a guide for the creation of intelligent modeling frameworks in the materials industry." @default.
- W4378468608 created "2023-05-27" @default.
- W4378468608 creator A5008940784 @default.
- W4378468608 creator A5009449260 @default.
- W4378468608 creator A5024058979 @default.
- W4378468608 creator A5043000714 @default.
- W4378468608 creator A5043734768 @default.
- W4378468608 creator A5066478520 @default.
- W4378468608 date "2023-05-25" @default.
- W4378468608 modified "2023-10-05" @default.
- W4378468608 title "Review of Image Augmentation Used in Deep Learning-Based Material Microscopic Image Segmentation" @default.
- W4378468608 cites W1901129140 @default.
- W4378468608 cites W1903029394 @default.
- W4378468608 cites W2001412060 @default.
- W4378468608 cites W2037962563 @default.
- W4378468608 cites W2089468765 @default.
- W4378468608 cites W2108598243 @default.
- W4378468608 cites W2157305458 @default.
- W4378468608 cites W2412782625 @default.
- W4378468608 cites W2599003897 @default.
- W4378468608 cites W2782436336 @default.
- W4378468608 cites W2796672611 @default.
- W4378468608 cites W2913926073 @default.
- W4378468608 cites W2919115771 @default.
- W4378468608 cites W2949736877 @default.
- W4378468608 cites W2962793481 @default.
- W4378468608 cites W2963073614 @default.
- W4378468608 cites W2963078159 @default.
- W4378468608 cites W2963383025 @default.
- W4378468608 cites W2963459241 @default.
- W4378468608 cites W2963800363 @default.
- W4378468608 cites W2964250774 @default.
- W4378468608 cites W2964773143 @default.
- W4378468608 cites W2981914352 @default.
- W4378468608 cites W2994731719 @default.
- W4378468608 cites W3035294798 @default.
- W4378468608 cites W3035682985 @default.
- W4378468608 cites W3041133507 @default.
- W4378468608 cites W3047916742 @default.
- W4378468608 cites W3086140914 @default.
- W4378468608 cites W3088623196 @default.
- W4378468608 cites W3092248103 @default.
- W4378468608 cites W3096831136 @default.
- W4378468608 cites W3098609640 @default.
- W4378468608 cites W3099319035 @default.
- W4378468608 cites W3134978274 @default.
- W4378468608 cites W3171873561 @default.
- W4378468608 cites W3177330184 @default.
- W4378468608 cites W3181249559 @default.
- W4378468608 cites W3212798786 @default.
- W4378468608 cites W4281264425 @default.
- W4378468608 cites W4312602363 @default.
- W4378468608 cites W4313339725 @default.
- W4378468608 cites W4320525814 @default.
- W4378468608 doi "https://doi.org/10.3390/app13116478" @default.
- W4378468608 hasPublicationYear "2023" @default.
- W4378468608 type Work @default.
- W4378468608 citedByCount "1" @default.
- W4378468608 countsByYear W43784686082023 @default.
- W4378468608 crossrefType "journal-article" @default.
- W4378468608 hasAuthorship W4378468608A5008940784 @default.
- W4378468608 hasAuthorship W4378468608A5009449260 @default.
- W4378468608 hasAuthorship W4378468608A5024058979 @default.
- W4378468608 hasAuthorship W4378468608A5043000714 @default.
- W4378468608 hasAuthorship W4378468608A5043734768 @default.
- W4378468608 hasAuthorship W4378468608A5066478520 @default.
- W4378468608 hasBestOaLocation W43784686081 @default.
- W4378468608 hasConcept C105795698 @default.
- W4378468608 hasConcept C108583219 @default.
- W4378468608 hasConcept C115961682 @default.
- W4378468608 hasConcept C119857082 @default.
- W4378468608 hasConcept C124504099 @default.
- W4378468608 hasConcept C13280743 @default.
- W4378468608 hasConcept C153180895 @default.
- W4378468608 hasConcept C154945302 @default.
- W4378468608 hasConcept C162324750 @default.
- W4378468608 hasConcept C185798385 @default.
- W4378468608 hasConcept C187736073 @default.
- W4378468608 hasConcept C202444582 @default.
- W4378468608 hasConcept C205649164 @default.
- W4378468608 hasConcept C27158222 @default.
- W4378468608 hasConcept C2780451532 @default.
- W4378468608 hasConcept C31972630 @default.
- W4378468608 hasConcept C33923547 @default.
- W4378468608 hasConcept C41008148 @default.
- W4378468608 hasConcept C89600930 @default.
- W4378468608 hasConcept C9417928 @default.
- W4378468608 hasConcept C9652623 @default.
- W4378468608 hasConceptScore W4378468608C105795698 @default.
- W4378468608 hasConceptScore W4378468608C108583219 @default.
- W4378468608 hasConceptScore W4378468608C115961682 @default.
- W4378468608 hasConceptScore W4378468608C119857082 @default.
- W4378468608 hasConceptScore W4378468608C124504099 @default.
- W4378468608 hasConceptScore W4378468608C13280743 @default.
- W4378468608 hasConceptScore W4378468608C153180895 @default.
- W4378468608 hasConceptScore W4378468608C154945302 @default.
- W4378468608 hasConceptScore W4378468608C162324750 @default.
- W4378468608 hasConceptScore W4378468608C185798385 @default.