Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378528083> ?p ?o ?g. }
- W4378528083 endingPage "2466" @default.
- W4378528083 startingPage "2466" @default.
- W4378528083 abstract "The main goal of machine learning is the creation of self-learning algorithms in many areas of human activity. It allows a replacement of a person with artificial intelligence in seeking to expand production. The theory of artificial neural networks, which have already replaced humans in many problems, remains the most well-utilized branch of machine learning. Thus, one must select appropriate neural network architectures, data processing, and advanced applied mathematics tools. A common challenge for these networks is achieving the highest accuracy in a short time. This problem is solved by modifying networks and improving data pre-processing, where accuracy increases along with training time. Bt using optimization methods, one can improve the accuracy without increasing the time. In this review, we consider all existing optimization algorithms that meet in neural networks. We present modifications of optimization algorithms of the first, second, and information-geometric order, which are related to information geometry for Fisher–Rao and Bregman metrics. These optimizers have significantly influenced the development of neural networks through geometric and probabilistic tools. We present applications of all the given optimization algorithms, considering the types of neural networks. After that, we show ways to develop optimization algorithms in further research using modern neural networks. Fractional order, bilevel, and gradient-free optimizers can replace classical gradient-based optimizers. Such approaches are induced in graph, spiking, complex-valued, quantum, and wavelet neural networks. Besides pattern recognition, time series prediction, and object detection, there are many other applications in machine learning: quantum computations, partial differential, and integrodifferential equations, and stochastic processes." @default.
- W4378528083 created "2023-05-28" @default.
- W4378528083 creator A5019972460 @default.
- W4378528083 creator A5032223985 @default.
- W4378528083 creator A5060258197 @default.
- W4378528083 date "2023-05-26" @default.
- W4378528083 modified "2023-10-05" @default.
- W4378528083 title "Survey of Optimization Algorithms in Modern Neural Networks" @default.
- W4378528083 cites W1581231885 @default.
- W4378528083 cites W1966150378 @default.
- W4378528083 cites W1969625066 @default.
- W4378528083 cites W1969664650 @default.
- W4378528083 cites W1990585910 @default.
- W4378528083 cites W1990938413 @default.
- W4378528083 cites W1994465184 @default.
- W4378528083 cites W1996688253 @default.
- W4378528083 cites W2012231377 @default.
- W4378528083 cites W2013918710 @default.
- W4378528083 cites W2014851363 @default.
- W4378528083 cites W2018215034 @default.
- W4378528083 cites W2021846130 @default.
- W4378528083 cites W2026256106 @default.
- W4378528083 cites W2030350543 @default.
- W4378528083 cites W2031296078 @default.
- W4378528083 cites W2033868481 @default.
- W4378528083 cites W2046495522 @default.
- W4378528083 cites W2047962774 @default.
- W4378528083 cites W2051434435 @default.
- W4378528083 cites W2066743741 @default.
- W4378528083 cites W2075124911 @default.
- W4378528083 cites W2079299054 @default.
- W4378528083 cites W2084917200 @default.
- W4378528083 cites W2091549324 @default.
- W4378528083 cites W2092087339 @default.
- W4378528083 cites W2099814209 @default.
- W4378528083 cites W2106965455 @default.
- W4378528083 cites W2119053144 @default.
- W4378528083 cites W2122712590 @default.
- W4378528083 cites W2127838862 @default.
- W4378528083 cites W2129427957 @default.
- W4378528083 cites W2151890896 @default.
- W4378528083 cites W2157473429 @default.
- W4378528083 cites W2252184786 @default.
- W4378528083 cites W2311599690 @default.
- W4378528083 cites W2316564661 @default.
- W4378528083 cites W2531409750 @default.
- W4378528083 cites W2543580944 @default.
- W4378528083 cites W2554078916 @default.
- W4378528083 cites W2555012488 @default.
- W4378528083 cites W2558580397 @default.
- W4378528083 cites W2589174422 @default.
- W4378528083 cites W2666784499 @default.
- W4378528083 cites W2729298440 @default.
- W4378528083 cites W2776705292 @default.
- W4378528083 cites W2789027062 @default.
- W4378528083 cites W2790567680 @default.
- W4378528083 cites W2795593773 @default.
- W4378528083 cites W2795696415 @default.
- W4378528083 cites W2801723110 @default.
- W4378528083 cites W2811483498 @default.
- W4378528083 cites W2885195348 @default.
- W4378528083 cites W2888146396 @default.
- W4378528083 cites W2902038253 @default.
- W4378528083 cites W2902264310 @default.
- W4378528083 cites W2909136751 @default.
- W4378528083 cites W2910666328 @default.
- W4378528083 cites W2911543579 @default.
- W4378528083 cites W2919958648 @default.
- W4378528083 cites W2922015385 @default.
- W4378528083 cites W2922428687 @default.
- W4378528083 cites W2940603351 @default.
- W4378528083 cites W2944712254 @default.
- W4378528083 cites W2948490758 @default.
- W4378528083 cites W2954996726 @default.
- W4378528083 cites W2963125010 @default.
- W4378528083 cites W2963172626 @default.
- W4378528083 cites W2963419707 @default.
- W4378528083 cites W2965857035 @default.
- W4378528083 cites W2969381807 @default.
- W4378528083 cites W2969466692 @default.
- W4378528083 cites W2971906246 @default.
- W4378528083 cites W2972178360 @default.
- W4378528083 cites W2977501091 @default.
- W4378528083 cites W2981296444 @default.
- W4378528083 cites W2988023719 @default.
- W4378528083 cites W2994838458 @default.
- W4378528083 cites W2999716773 @default.
- W4378528083 cites W3005768517 @default.
- W4378528083 cites W3007475506 @default.
- W4378528083 cites W3009083936 @default.
- W4378528083 cites W3011885901 @default.
- W4378528083 cites W3011974631 @default.
- W4378528083 cites W3018807068 @default.
- W4378528083 cites W3022782115 @default.
- W4378528083 cites W3030383979 @default.
- W4378528083 cites W3031420959 @default.
- W4378528083 cites W3034469271 @default.
- W4378528083 cites W3037045207 @default.