Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385655365> ?p ?o ?g. }
- W4385655365 endingPage "3909" @default.
- W4385655365 startingPage "3909" @default.
- W4385655365 abstract "The building damage caused by natural disasters seriously threatens human security. Applying deep learning algorithms to identify collapsed buildings from remote sensing images is crucial for rapid post-disaster emergency response. However, the diversity of buildings, limited training dataset size, and lack of ground-truth samples after sudden disasters can significantly reduce the generalization of a pre-trained model for building damage identification when applied directly to non-preset locations. To address this challenge, a self-incremental learning framework (i.e., SELF) is proposed in this paper, which can quickly improve the generalization ability of the pre-trained model in disaster areas by self-training an incremental model using automatically selected samples from post-disaster images. The effectiveness of the proposed method is verified on the 2010 Yushu earthquake, 2023 Turkey earthquake, and other disaster types. The experimental results demonstrate that our approach outperforms state-of-the-art methods in terms of collapsed building identification, with an average increase of more than 6.4% in the Kappa coefficient. Furthermore, the entire process of the self-incremental learning method, including sample selection, incremental learning, and collapsed building identification, can be completed within 6 h after obtaining the post-disaster images. Therefore, the proposed method is effective for emergency response to natural disasters, which can quickly improve the application effect of the deep learning model to provide more accurate building damage results." @default.
- W4385655365 created "2023-08-09" @default.
- W4385655365 creator A5002587031 @default.
- W4385655365 creator A5060209705 @default.
- W4385655365 creator A5087884920 @default.
- W4385655365 date "2023-08-07" @default.
- W4385655365 modified "2023-10-16" @default.
- W4385655365 title "Self-Incremental Learning for Rapid Identification of Collapsed Buildings Triggered by Natural Disasters" @default.
- W4385655365 cites W2016965806 @default.
- W4385655365 cites W2027000042 @default.
- W4385655365 cites W2031489346 @default.
- W4385655365 cites W2046436410 @default.
- W4385655365 cites W2133059825 @default.
- W4385655365 cites W2135228726 @default.
- W4385655365 cites W2141210907 @default.
- W4385655365 cites W2164777277 @default.
- W4385655365 cites W2465668693 @default.
- W4385655365 cites W2771083582 @default.
- W4385655365 cites W2786973690 @default.
- W4385655365 cites W2964081807 @default.
- W4385655365 cites W2994342516 @default.
- W4385655365 cites W3025070692 @default.
- W4385655365 cites W3033128064 @default.
- W4385655365 cites W3034461553 @default.
- W4385655365 cites W3108316907 @default.
- W4385655365 cites W3112821508 @default.
- W4385655365 cites W3115470671 @default.
- W4385655365 cites W3126315990 @default.
- W4385655365 cites W3134089650 @default.
- W4385655365 cites W3176602994 @default.
- W4385655365 cites W3195032332 @default.
- W4385655365 cites W3196748491 @default.
- W4385655365 cites W3215369359 @default.
- W4385655365 cites W4206309202 @default.
- W4385655365 cites W4280579421 @default.
- W4385655365 cites W4308097935 @default.
- W4385655365 cites W4311088167 @default.
- W4385655365 doi "https://doi.org/10.3390/rs15153909" @default.
- W4385655365 hasPublicationYear "2023" @default.
- W4385655365 type Work @default.
- W4385655365 citedByCount "0" @default.
- W4385655365 crossrefType "journal-article" @default.
- W4385655365 hasAuthorship W4385655365A5002587031 @default.
- W4385655365 hasAuthorship W4385655365A5060209705 @default.
- W4385655365 hasAuthorship W4385655365A5087884920 @default.
- W4385655365 hasBestOaLocation W43856553651 @default.
- W4385655365 hasConcept C108583219 @default.
- W4385655365 hasConcept C111919701 @default.
- W4385655365 hasConcept C116834253 @default.
- W4385655365 hasConcept C134306372 @default.
- W4385655365 hasConcept C153294291 @default.
- W4385655365 hasConcept C154945302 @default.
- W4385655365 hasConcept C166566181 @default.
- W4385655365 hasConcept C177148314 @default.
- W4385655365 hasConcept C205649164 @default.
- W4385655365 hasConcept C2777211547 @default.
- W4385655365 hasConcept C2779481623 @default.
- W4385655365 hasConcept C3017997152 @default.
- W4385655365 hasConcept C33923547 @default.
- W4385655365 hasConcept C41008148 @default.
- W4385655365 hasConcept C545542383 @default.
- W4385655365 hasConcept C59822182 @default.
- W4385655365 hasConcept C71924100 @default.
- W4385655365 hasConcept C86803240 @default.
- W4385655365 hasConcept C98045186 @default.
- W4385655365 hasConceptScore W4385655365C108583219 @default.
- W4385655365 hasConceptScore W4385655365C111919701 @default.
- W4385655365 hasConceptScore W4385655365C116834253 @default.
- W4385655365 hasConceptScore W4385655365C134306372 @default.
- W4385655365 hasConceptScore W4385655365C153294291 @default.
- W4385655365 hasConceptScore W4385655365C154945302 @default.
- W4385655365 hasConceptScore W4385655365C166566181 @default.
- W4385655365 hasConceptScore W4385655365C177148314 @default.
- W4385655365 hasConceptScore W4385655365C205649164 @default.
- W4385655365 hasConceptScore W4385655365C2777211547 @default.
- W4385655365 hasConceptScore W4385655365C2779481623 @default.
- W4385655365 hasConceptScore W4385655365C3017997152 @default.
- W4385655365 hasConceptScore W4385655365C33923547 @default.
- W4385655365 hasConceptScore W4385655365C41008148 @default.
- W4385655365 hasConceptScore W4385655365C545542383 @default.
- W4385655365 hasConceptScore W4385655365C59822182 @default.
- W4385655365 hasConceptScore W4385655365C71924100 @default.
- W4385655365 hasConceptScore W4385655365C86803240 @default.
- W4385655365 hasConceptScore W4385655365C98045186 @default.
- W4385655365 hasIssue "15" @default.
- W4385655365 hasLocation W43856553651 @default.
- W4385655365 hasOpenAccess W4385655365 @default.
- W4385655365 hasPrimaryLocation W43856553651 @default.
- W4385655365 hasRelatedWork W2126887587 @default.
- W4385655365 hasRelatedWork W2731899572 @default.
- W4385655365 hasRelatedWork W2939353110 @default.
- W4385655365 hasRelatedWork W3009238340 @default.
- W4385655365 hasRelatedWork W3215138031 @default.
- W4385655365 hasRelatedWork W4230611425 @default.
- W4385655365 hasRelatedWork W4312962853 @default.
- W4385655365 hasRelatedWork W4321369474 @default.
- W4385655365 hasRelatedWork W4327774331 @default.
- W4385655365 hasRelatedWork W4360585206 @default.