Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385972885> ?p ?o ?g. }
- W4385972885 endingPage "e667" @default.
- W4385972885 startingPage "e657" @default.
- W4385972885 abstract "Comorbidity, frailty, and decreased cognitive function lead to a higher risk of death in elderly patients (more than 65 years of age) during acute medical events. Early and accurate illness severity assessment can support appropriate decision making for clinicians caring for these patients. We aimed to develop ELDER-ICU, a machine learning model to assess the illness severity of older adults admitted to the intensive care unit (ICU) with cohort-specific calibration and evaluation for potential model bias.In this retrospective, international multicentre study, the ELDER-ICU model was developed using data from 14 US hospitals, and validated in 171 hospitals from the USA and Netherlands. Data were extracted from the Medical Information Mart for Intensive Care database, electronic ICU Collaborative Research Database, and Amsterdam University Medical Centers Database. We used six categories of data as predictors, including demographics and comorbidities, physical frailty, laboratory tests, vital signs, treatments, and urine output. Patient data from the first day of ICU stay were used to predict in-hospital mortality. We used the eXtreme Gradient Boosting algorithm (XGBoost) to develop models and the SHapley Additive exPlanations method to explain model prediction. The trained model was calibrated before internal, external, and temporal validation. The final XGBoost model was compared against three other machine learning algorithms and five clinical scores. We performed subgroup analysis based on age, sex, and race. We assessed the discrimination and calibration of models using the area under receiver operating characteristic (AUROC) and standardised mortality ratio (SMR) with 95% CIs.Using the development dataset (n=50 366) and predictive model building process, the XGBoost algorithm performed the best in all types of validations compared with other machine learning algorithms and clinical scores (internal validation with 5037 patients from 14 US hospitals, AUROC=0·866 [95% CI 0·851-0·880]; external validation in the US population with 20 541 patients from 169 hospitals, AUROC=0·838 [0·829-0·847]; external validation in European population with 2411 patients from one hospital, AUROC=0·833 [0·812-0·853]; temporal validation with 4311 patients from one hospital, AUROC=0·884 [0·869-0·897]). In the external validation set (US population), the median AUROCs of bias evaluations covering eight subgroups were above 0·81, and the overall SMR was 0·99 (0·96-1·03). The top ten risk predictors were the minimum Glasgow Coma Scale score, total urine output, average respiratory rate, mechanical ventilation use, best state of activity, Charlson Comorbidity Index score, geriatric nutritional risk index, code status, age, and maximum blood urea nitrogen. A simplified model containing only the top 20 features (ELDER-ICU-20) had similar predictive performance to the full model.The ELDER-ICU model reliably predicts the risk of in-hospital mortality using routinely collected clinical features. The predictions could inform clinicians about patients who are at elevated risk of deterioration. Prospective validation of this model in clinical practice and a process for continuous performance monitoring and model recalibration are needed.National Institutes of Health, National Natural Science Foundation of China, National Special Health Science Program, Health Science and Technology Plan of Zhejiang Province, Fundamental Research Funds for the Central Universities, Drug Clinical Evaluate Research of Chinese Pharmaceutical Association, and National Key R&D Program of China." @default.
- W4385972885 created "2023-08-19" @default.
- W4385972885 creator A5006606272 @default.
- W4385972885 creator A5011869476 @default.
- W4385972885 creator A5014206741 @default.
- W4385972885 creator A5014474282 @default.
- W4385972885 creator A5019919215 @default.
- W4385972885 creator A5020780414 @default.
- W4385972885 creator A5022222926 @default.
- W4385972885 creator A5025008858 @default.
- W4385972885 creator A5030085706 @default.
- W4385972885 creator A5031401755 @default.
- W4385972885 creator A5043267366 @default.
- W4385972885 creator A5048442250 @default.
- W4385972885 creator A5074887163 @default.
- W4385972885 creator A5078409612 @default.
- W4385972885 creator A5091920814 @default.
- W4385972885 date "2023-10-01" @default.
- W4385972885 modified "2023-10-14" @default.
- W4385972885 title "Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation" @default.
- W4385972885 cites W1991864206 @default.
- W4385972885 cites W2000566182 @default.
- W4385972885 cites W2011861268 @default.
- W4385972885 cites W2078271269 @default.
- W4385972885 cites W2108349450 @default.
- W4385972885 cites W2141710162 @default.
- W4385972885 cites W2142514031 @default.
- W4385972885 cites W2169685811 @default.
- W4385972885 cites W2396881363 @default.
- W4385972885 cites W2484207087 @default.
- W4385972885 cites W2728404809 @default.
- W4385972885 cites W2891400669 @default.
- W4385972885 cites W2892741787 @default.
- W4385972885 cites W2967771861 @default.
- W4385972885 cites W2973091513 @default.
- W4385972885 cites W2990734269 @default.
- W4385972885 cites W2993298543 @default.
- W4385972885 cites W3031644567 @default.
- W4385972885 cites W3080627676 @default.
- W4385972885 cites W3113260027 @default.
- W4385972885 cites W3126928558 @default.
- W4385972885 cites W3128802392 @default.
- W4385972885 cites W3131505924 @default.
- W4385972885 cites W3137590022 @default.
- W4385972885 cites W3177617320 @default.
- W4385972885 cites W4210256180 @default.
- W4385972885 cites W4220792594 @default.
- W4385972885 cites W4229036967 @default.
- W4385972885 cites W4247943214 @default.
- W4385972885 cites W4281616841 @default.
- W4385972885 cites W4313439128 @default.
- W4385972885 doi "https://doi.org/10.1016/s2589-7500(23)00128-0" @default.
- W4385972885 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37599147" @default.
- W4385972885 hasPublicationYear "2023" @default.
- W4385972885 type Work @default.
- W4385972885 citedByCount "1" @default.
- W4385972885 crossrefType "journal-article" @default.
- W4385972885 hasAuthorship W4385972885A5006606272 @default.
- W4385972885 hasAuthorship W4385972885A5011869476 @default.
- W4385972885 hasAuthorship W4385972885A5014206741 @default.
- W4385972885 hasAuthorship W4385972885A5014474282 @default.
- W4385972885 hasAuthorship W4385972885A5019919215 @default.
- W4385972885 hasAuthorship W4385972885A5020780414 @default.
- W4385972885 hasAuthorship W4385972885A5022222926 @default.
- W4385972885 hasAuthorship W4385972885A5025008858 @default.
- W4385972885 hasAuthorship W4385972885A5030085706 @default.
- W4385972885 hasAuthorship W4385972885A5031401755 @default.
- W4385972885 hasAuthorship W4385972885A5043267366 @default.
- W4385972885 hasAuthorship W4385972885A5048442250 @default.
- W4385972885 hasAuthorship W4385972885A5074887163 @default.
- W4385972885 hasAuthorship W4385972885A5078409612 @default.
- W4385972885 hasAuthorship W4385972885A5091920814 @default.
- W4385972885 hasBestOaLocation W43859728851 @default.
- W4385972885 hasConcept C126322002 @default.
- W4385972885 hasConcept C177713679 @default.
- W4385972885 hasConcept C187960798 @default.
- W4385972885 hasConcept C194828623 @default.
- W4385972885 hasConcept C2776376669 @default.
- W4385972885 hasConcept C2779159551 @default.
- W4385972885 hasConcept C2991859549 @default.
- W4385972885 hasConcept C2993568657 @default.
- W4385972885 hasConcept C44249647 @default.
- W4385972885 hasConcept C58471807 @default.
- W4385972885 hasConcept C71924100 @default.
- W4385972885 hasConceptScore W4385972885C126322002 @default.
- W4385972885 hasConceptScore W4385972885C177713679 @default.
- W4385972885 hasConceptScore W4385972885C187960798 @default.
- W4385972885 hasConceptScore W4385972885C194828623 @default.
- W4385972885 hasConceptScore W4385972885C2776376669 @default.
- W4385972885 hasConceptScore W4385972885C2779159551 @default.
- W4385972885 hasConceptScore W4385972885C2991859549 @default.
- W4385972885 hasConceptScore W4385972885C2993568657 @default.
- W4385972885 hasConceptScore W4385972885C44249647 @default.
- W4385972885 hasConceptScore W4385972885C58471807 @default.
- W4385972885 hasConceptScore W4385972885C71924100 @default.
- W4385972885 hasIssue "10" @default.
- W4385972885 hasLocation W43859728851 @default.
- W4385972885 hasLocation W43859728852 @default.