Matches in SemOpenAlex for { <https://semopenalex.org/work/W4386003100> ?p ?o ?g. }
- W4386003100 endingPage "e19195" @default.
- W4386003100 startingPage "e19195" @default.
- W4386003100 abstract "The COVID-19 pandemic has had far-reaching consequences globally, including a significant loss of lives, escalating unemployment rates, economic instability, deteriorating mental well-being, social conflicts, and even political discord. Vaccination, recognized as a pivotal measure in mitigating the adverse effects of COVID-19, has evoked a diverse range of sentiments worldwide. In particular, numerous users on social media platforms have expressed concerns regarding vaccine availability and potential side effects. Therefore, it is imperative for governmental authorities and senior health policy strategists to gain insights into the public's perspectives on vaccine mandates in order to effectively implement their vaccination initiatives. Despite the critical importance of comprehending the underlying factors influencing COVID-19 vaccine sentiment, the existing literature offers limited research studies on this subject matter. This paper presents an innovative methodology that harnesses Twitter data to extract sentiment pertaining to COVID-19 vaccination through the utilization of Artificial Intelligence techniques such as sentiment analysis, entity detection, linear regression, and logistic regression. The proposed methodology was applied and tested on live Twitter feeds containing COVID-19 vaccine-related tweets, spanning from February 14, 2021, to April 2, 2023. Notably, this approach successfully processed tweets in 45 languages originating from over 100 countries, enabling users to select from an extensive scenario space of approximately 3.55 × 10249 possible scenarios. By selecting specific scenarios, the proposed methodology effectively identified numerous determinants contributing to vaccine sentiment across iOS, Android, and Windows platforms. In comparison to previous studies documented in the existing literature, the presented solution emerges as the most robust in detecting the fundamental drivers of vaccine sentiment and demonstrates the vaccination sentiments over a substantially longer period exceeding 24 months." @default.
- W4386003100 created "2023-08-20" @default.
- W4386003100 creator A5030047727 @default.
- W4386003100 creator A5034528277 @default.
- W4386003100 date "2023-09-01" @default.
- W4386003100 modified "2023-10-10" @default.
- W4386003100 title "Identifying drivers of COVID-19 vaccine sentiments for effective vaccination policy" @default.
- W4386003100 cites W1921516774 @default.
- W4386003100 cites W1967137980 @default.
- W4386003100 cites W2051669046 @default.
- W4386003100 cites W2130342755 @default.
- W4386003100 cites W2160481489 @default.
- W4386003100 cites W2608505863 @default.
- W4386003100 cites W2800832350 @default.
- W4386003100 cites W2976542150 @default.
- W4386003100 cites W3011133285 @default.
- W4386003100 cites W3025654839 @default.
- W4386003100 cites W3026887460 @default.
- W4386003100 cites W3043013845 @default.
- W4386003100 cites W3044684479 @default.
- W4386003100 cites W3092074325 @default.
- W4386003100 cites W3094221957 @default.
- W4386003100 cites W3127056209 @default.
- W4386003100 cites W3138408369 @default.
- W4386003100 cites W3190593662 @default.
- W4386003100 cites W3204541262 @default.
- W4386003100 cites W3211199416 @default.
- W4386003100 cites W3213699827 @default.
- W4386003100 cites W4200223055 @default.
- W4386003100 cites W4206492183 @default.
- W4386003100 cites W4214761328 @default.
- W4386003100 cites W4224267294 @default.
- W4386003100 cites W4225538066 @default.
- W4386003100 cites W4281255699 @default.
- W4386003100 cites W4286362903 @default.
- W4386003100 cites W4296450946 @default.
- W4386003100 doi "https://doi.org/10.1016/j.heliyon.2023.e19195" @default.
- W4386003100 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37681141" @default.
- W4386003100 hasPublicationYear "2023" @default.
- W4386003100 type Work @default.
- W4386003100 citedByCount "1" @default.
- W4386003100 crossrefType "journal-article" @default.
- W4386003100 hasAuthorship W4386003100A5030047727 @default.
- W4386003100 hasAuthorship W4386003100A5034528277 @default.
- W4386003100 hasBestOaLocation W43860031001 @default.
- W4386003100 hasConcept C108827166 @default.
- W4386003100 hasConcept C136764020 @default.
- W4386003100 hasConcept C142724271 @default.
- W4386003100 hasConcept C144133560 @default.
- W4386003100 hasConcept C154945302 @default.
- W4386003100 hasConcept C159047783 @default.
- W4386003100 hasConcept C17744445 @default.
- W4386003100 hasConcept C22070199 @default.
- W4386003100 hasConcept C2522767166 @default.
- W4386003100 hasConcept C2779134260 @default.
- W4386003100 hasConcept C3008058167 @default.
- W4386003100 hasConcept C39549134 @default.
- W4386003100 hasConcept C41008148 @default.
- W4386003100 hasConcept C518677369 @default.
- W4386003100 hasConcept C524204448 @default.
- W4386003100 hasConcept C66402592 @default.
- W4386003100 hasConcept C71924100 @default.
- W4386003100 hasConcept C89623803 @default.
- W4386003100 hasConceptScore W4386003100C108827166 @default.
- W4386003100 hasConceptScore W4386003100C136764020 @default.
- W4386003100 hasConceptScore W4386003100C142724271 @default.
- W4386003100 hasConceptScore W4386003100C144133560 @default.
- W4386003100 hasConceptScore W4386003100C154945302 @default.
- W4386003100 hasConceptScore W4386003100C159047783 @default.
- W4386003100 hasConceptScore W4386003100C17744445 @default.
- W4386003100 hasConceptScore W4386003100C22070199 @default.
- W4386003100 hasConceptScore W4386003100C2522767166 @default.
- W4386003100 hasConceptScore W4386003100C2779134260 @default.
- W4386003100 hasConceptScore W4386003100C3008058167 @default.
- W4386003100 hasConceptScore W4386003100C39549134 @default.
- W4386003100 hasConceptScore W4386003100C41008148 @default.
- W4386003100 hasConceptScore W4386003100C518677369 @default.
- W4386003100 hasConceptScore W4386003100C524204448 @default.
- W4386003100 hasConceptScore W4386003100C66402592 @default.
- W4386003100 hasConceptScore W4386003100C71924100 @default.
- W4386003100 hasConceptScore W4386003100C89623803 @default.
- W4386003100 hasIssue "9" @default.
- W4386003100 hasLocation W43860031001 @default.
- W4386003100 hasLocation W43860031002 @default.
- W4386003100 hasOpenAccess W4386003100 @default.
- W4386003100 hasPrimaryLocation W43860031001 @default.
- W4386003100 hasRelatedWork W2252197266 @default.
- W4386003100 hasRelatedWork W2748952813 @default.
- W4386003100 hasRelatedWork W2899084033 @default.
- W4386003100 hasRelatedWork W2999459970 @default.
- W4386003100 hasRelatedWork W3049681097 @default.
- W4386003100 hasRelatedWork W3148756070 @default.
- W4386003100 hasRelatedWork W4205350312 @default.
- W4386003100 hasRelatedWork W4287903834 @default.
- W4386003100 hasRelatedWork W4312793323 @default.
- W4386003100 hasRelatedWork W4382286084 @default.
- W4386003100 hasVolume "9" @default.
- W4386003100 isParatext "false" @default.