Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387131746> ?p ?o ?g. }
- W4387131746 endingPage "185" @default.
- W4387131746 startingPage "169" @default.
- W4387131746 abstract "Plant diseases pose a significant threat to agriculture, leading to yield and quality losses. Traditional manual methods for disease identification are time-consuming and often yield inaccurate results. Automated systems leveraging image processing and machine learning techniques have emerged to improve accuracy and efficiency. Integrating these approaches allows image preprocessing and feature extraction to be combined with machine learning algorithms for pattern recognition and classification. Deep learning, particularly convolutional neural networks (CNNs), has revolutionized computer vision tasks, enabling hierarchical feature extraction. Hybrid methods offer advantages such as improved accuracy, faster identification, cost reduction, and increased agricultural productivity. This survey explores the significance and potential of hybrid approaches in plant disease identification, addressing the growing need for early detection and management in agriculture." @default.
- W4387131746 created "2023-09-29" @default.
- W4387131746 creator A5031135413 @default.
- W4387131746 creator A5083529307 @default.
- W4387131746 date "2023-09-28" @default.
- W4387131746 modified "2023-09-30" @default.
- W4387131746 title "Hybrid Approaches for Plant Disease Recognition" @default.
- W4387131746 cites W1141054642 @default.
- W4387131746 cites W1860593215 @default.
- W4387131746 cites W1968378357 @default.
- W4387131746 cites W2004732416 @default.
- W4387131746 cites W2005543329 @default.
- W4387131746 cites W2012061584 @default.
- W4387131746 cites W2020691134 @default.
- W4387131746 cites W2023057971 @default.
- W4387131746 cites W2041636156 @default.
- W4387131746 cites W2046594200 @default.
- W4387131746 cites W2058533675 @default.
- W4387131746 cites W2092446877 @default.
- W4387131746 cites W2117793557 @default.
- W4387131746 cites W2327895505 @default.
- W4387131746 cites W2567474625 @default.
- W4387131746 cites W2776146695 @default.
- W4387131746 cites W2891068048 @default.
- W4387131746 cites W2902625477 @default.
- W4387131746 cites W2904287468 @default.
- W4387131746 cites W2947152669 @default.
- W4387131746 cites W2972113714 @default.
- W4387131746 cites W3003663182 @default.
- W4387131746 cites W3006296545 @default.
- W4387131746 cites W3007600163 @default.
- W4387131746 cites W3016522735 @default.
- W4387131746 cites W3017142502 @default.
- W4387131746 cites W3017615038 @default.
- W4387131746 cites W3036736187 @default.
- W4387131746 cites W3044593388 @default.
- W4387131746 cites W3045756608 @default.
- W4387131746 cites W3046138656 @default.
- W4387131746 cites W3067356005 @default.
- W4387131746 cites W3083473462 @default.
- W4387131746 cites W3097291122 @default.
- W4387131746 cites W3127305248 @default.
- W4387131746 cites W3136213652 @default.
- W4387131746 cites W3172544793 @default.
- W4387131746 cites W4200222497 @default.
- W4387131746 cites W4214811678 @default.
- W4387131746 cites W4319439437 @default.
- W4387131746 doi "https://doi.org/10.4018/978-1-6684-7659-8.ch009" @default.
- W4387131746 hasPublicationYear "2023" @default.
- W4387131746 type Work @default.
- W4387131746 citedByCount "0" @default.
- W4387131746 crossrefType "book-chapter" @default.
- W4387131746 hasAuthorship W4387131746A5031135413 @default.
- W4387131746 hasAuthorship W4387131746A5083529307 @default.
- W4387131746 hasConcept C10551718 @default.
- W4387131746 hasConcept C108583219 @default.
- W4387131746 hasConcept C115961682 @default.
- W4387131746 hasConcept C116834253 @default.
- W4387131746 hasConcept C119857082 @default.
- W4387131746 hasConcept C138885662 @default.
- W4387131746 hasConcept C150903083 @default.
- W4387131746 hasConcept C153180895 @default.
- W4387131746 hasConcept C154945302 @default.
- W4387131746 hasConcept C2776401178 @default.
- W4387131746 hasConcept C3019235130 @default.
- W4387131746 hasConcept C34736171 @default.
- W4387131746 hasConcept C41008148 @default.
- W4387131746 hasConcept C41895202 @default.
- W4387131746 hasConcept C52622490 @default.
- W4387131746 hasConcept C59822182 @default.
- W4387131746 hasConcept C81363708 @default.
- W4387131746 hasConcept C86803240 @default.
- W4387131746 hasConcept C9417928 @default.
- W4387131746 hasConceptScore W4387131746C10551718 @default.
- W4387131746 hasConceptScore W4387131746C108583219 @default.
- W4387131746 hasConceptScore W4387131746C115961682 @default.
- W4387131746 hasConceptScore W4387131746C116834253 @default.
- W4387131746 hasConceptScore W4387131746C119857082 @default.
- W4387131746 hasConceptScore W4387131746C138885662 @default.
- W4387131746 hasConceptScore W4387131746C150903083 @default.
- W4387131746 hasConceptScore W4387131746C153180895 @default.
- W4387131746 hasConceptScore W4387131746C154945302 @default.
- W4387131746 hasConceptScore W4387131746C2776401178 @default.
- W4387131746 hasConceptScore W4387131746C3019235130 @default.
- W4387131746 hasConceptScore W4387131746C34736171 @default.
- W4387131746 hasConceptScore W4387131746C41008148 @default.
- W4387131746 hasConceptScore W4387131746C41895202 @default.
- W4387131746 hasConceptScore W4387131746C52622490 @default.
- W4387131746 hasConceptScore W4387131746C59822182 @default.
- W4387131746 hasConceptScore W4387131746C81363708 @default.
- W4387131746 hasConceptScore W4387131746C86803240 @default.
- W4387131746 hasConceptScore W4387131746C9417928 @default.
- W4387131746 hasLocation W43871317461 @default.
- W4387131746 hasOpenAccess W4387131746 @default.
- W4387131746 hasPrimaryLocation W43871317461 @default.
- W4387131746 hasRelatedWork W2126100045 @default.
- W4387131746 hasRelatedWork W2279398222 @default.
- W4387131746 hasRelatedWork W2391959412 @default.