Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387652912> ?p ?o ?g. }
- W4387652912 endingPage "11" @default.
- W4387652912 startingPage "1" @default.
- W4387652912 abstract "ABSTRACTThis study aims to assess the economic resilience of manufacturing firms through a combination of output-oriented data envelopment analysis (DEA) and machine learning techniques. The research draws on economic resilience factors identified in the literature and focuses on three categories: economic-related factors (financial flexibility, microeconomic market, macroeconomic stability), production-related factors (restoration of production, backup inventories, resource pooling/sharing), and management-related factors (diversification of activities, good governance (management), relocation). Using DEA, a mathematical approach, the study computes and analyzes the contributions of various components to economic resilience. The results of DEA normalization indicate that the highest weighted criteria are financial flexibility, good governance (management), and resource pooling (sharing). To gain a deeper understanding of the data structure, the K-means algorithm is employed for clustering and analysis. K-means clustering is a popular exploratory data analysis technique that aims to group samples into clusters of equal variances by minimizing inertia or the sum of squares within each cluster. The combination of these techniques with sensitivity analysis provides a novel analytical approach for policy formulation and decision-making. The findings have implications for practitioners and domain experts, offering valuable insights into enhancing economic resilience in the manufacturing sector.JEL CLASSIFICATION: PRISMAKEYWORDS: Economic resiliencedata envelopment analysis (DEA)machine learning approachdecision-making unit (DMU)K-means clustering Disclosure statementNo potential conflict of interest was reported by the author(s)." @default.
- W4387652912 created "2023-10-16" @default.
- W4387652912 creator A5000363188 @default.
- W4387652912 creator A5010847662 @default.
- W4387652912 creator A5064614870 @default.
- W4387652912 creator A5083077430 @default.
- W4387652912 date "2023-10-15" @default.
- W4387652912 modified "2023-10-16" @default.
- W4387652912 title "Measuring economic resilience of manufacturing organization leveraging integrated data envelopment analysis (DEA)-machine learning approach" @default.
- W4387652912 cites W1979222715 @default.
- W4387652912 cites W1979779616 @default.
- W4387652912 cites W1980471233 @default.
- W4387652912 cites W1996260728 @default.
- W4387652912 cites W1997338951 @default.
- W4387652912 cites W2017129737 @default.
- W4387652912 cites W2020709234 @default.
- W4387652912 cites W2096015313 @default.
- W4387652912 cites W2110013894 @default.
- W4387652912 cites W2110250287 @default.
- W4387652912 cites W2110998024 @default.
- W4387652912 cites W2155428764 @default.
- W4387652912 cites W2157131365 @default.
- W4387652912 cites W2163537246 @default.
- W4387652912 cites W2208056875 @default.
- W4387652912 cites W2466887502 @default.
- W4387652912 cites W2579328202 @default.
- W4387652912 cites W2762321275 @default.
- W4387652912 cites W2911557936 @default.
- W4387652912 cites W2911734693 @default.
- W4387652912 cites W2944202703 @default.
- W4387652912 cites W2947048224 @default.
- W4387652912 cites W2947294290 @default.
- W4387652912 cites W3002931009 @default.
- W4387652912 cites W3021560568 @default.
- W4387652912 cites W3026502586 @default.
- W4387652912 cites W3034424588 @default.
- W4387652912 cites W3089762860 @default.
- W4387652912 cites W3098223835 @default.
- W4387652912 cites W3124329888 @default.
- W4387652912 cites W3134863031 @default.
- W4387652912 cites W3209743824 @default.
- W4387652912 cites W4306147446 @default.
- W4387652912 cites W4309620732 @default.
- W4387652912 cites W4313421671 @default.
- W4387652912 cites W4316590402 @default.
- W4387652912 cites W4362636680 @default.
- W4387652912 doi "https://doi.org/10.1080/17509653.2023.2267505" @default.
- W4387652912 hasPublicationYear "2023" @default.
- W4387652912 type Work @default.
- W4387652912 citedByCount "0" @default.
- W4387652912 crossrefType "journal-article" @default.
- W4387652912 hasAuthorship W4387652912A5000363188 @default.
- W4387652912 hasAuthorship W4387652912A5010847662 @default.
- W4387652912 hasAuthorship W4387652912A5064614870 @default.
- W4387652912 hasAuthorship W4387652912A5083077430 @default.
- W4387652912 hasConcept C10138342 @default.
- W4387652912 hasConcept C105795698 @default.
- W4387652912 hasConcept C121332964 @default.
- W4387652912 hasConcept C127413603 @default.
- W4387652912 hasConcept C154945302 @default.
- W4387652912 hasConcept C162324750 @default.
- W4387652912 hasConcept C175444787 @default.
- W4387652912 hasConcept C21547014 @default.
- W4387652912 hasConcept C22088475 @default.
- W4387652912 hasConcept C2778106978 @default.
- W4387652912 hasConcept C2778348673 @default.
- W4387652912 hasConcept C2779585090 @default.
- W4387652912 hasConcept C33923547 @default.
- W4387652912 hasConcept C39389867 @default.
- W4387652912 hasConcept C41008148 @default.
- W4387652912 hasConcept C42475967 @default.
- W4387652912 hasConcept C70437156 @default.
- W4387652912 hasConcept C73555534 @default.
- W4387652912 hasConcept C97355855 @default.
- W4387652912 hasConceptScore W4387652912C10138342 @default.
- W4387652912 hasConceptScore W4387652912C105795698 @default.
- W4387652912 hasConceptScore W4387652912C121332964 @default.
- W4387652912 hasConceptScore W4387652912C127413603 @default.
- W4387652912 hasConceptScore W4387652912C154945302 @default.
- W4387652912 hasConceptScore W4387652912C162324750 @default.
- W4387652912 hasConceptScore W4387652912C175444787 @default.
- W4387652912 hasConceptScore W4387652912C21547014 @default.
- W4387652912 hasConceptScore W4387652912C22088475 @default.
- W4387652912 hasConceptScore W4387652912C2778106978 @default.
- W4387652912 hasConceptScore W4387652912C2778348673 @default.
- W4387652912 hasConceptScore W4387652912C2779585090 @default.
- W4387652912 hasConceptScore W4387652912C33923547 @default.
- W4387652912 hasConceptScore W4387652912C39389867 @default.
- W4387652912 hasConceptScore W4387652912C41008148 @default.
- W4387652912 hasConceptScore W4387652912C42475967 @default.
- W4387652912 hasConceptScore W4387652912C70437156 @default.
- W4387652912 hasConceptScore W4387652912C73555534 @default.
- W4387652912 hasConceptScore W4387652912C97355855 @default.
- W4387652912 hasLocation W43876529121 @default.
- W4387652912 hasOpenAccess W4387652912 @default.
- W4387652912 hasPrimaryLocation W43876529121 @default.
- W4387652912 hasRelatedWork W147410782 @default.
- W4387652912 hasRelatedWork W2152352598 @default.