Matches in SemOpenAlex for { <https://semopenalex.org/work/W788045324> ?p ?o ?g. }
- W788045324 endingPage "76" @default.
- W788045324 startingPage "1" @default.
- W788045324 abstract "In 1990 George Lusztig introduced a quantum analogue of restricted enveloping algebras of Lie algebras, the small quantum groups. In his PhD thesis Christopher M. Drupieski generalized these to analogues of Frobenius kernels, the Frobenius-Lusztig kernels. Theydepend on three parameters, the characteristic p of the field, the order ell of a root of unity and the height r. The case r = 0 gives the small quantum groups defined by George Lusztig. Our thesis concerns basic classification questions from classical representation theory of these algebras. The determination of the representation type of an algebra answers the question if it is (at least theoretically) possible to classify the indecomposable modules of a given algebra up to isomorphism. If the small quantum group is not attached to an sl2, we show that all blocks different from the simple Steinberg block are of wild representation type. Thesl2-case was known before: the small half-quantum groups are tame, their half-quantum groups are representation-finite. The higher Frobenius-Lusztig kernels are all wild with the exception of explicitly known SL(2)-blocks in height one and the simple Steinberg blocks. For this result we have to assume certain niteness assumptions on cohomology which are known in the height zero case, but not proven in general. The Borel and nilpotent partsof the higher Frobenius-Lusztig kernels are wild.Auslander-Reiten theory is a tool to understand the module category of a finite dimensional algebra by describing the irreducible homomorphisms. The isomorphism classes of indecomposable modules and the irreducible maps are arranged in an oriented graph, theAuslander-Reiten quiver. We are interested in the shape of the connected components of this quiver. In the tame and representation-finite cases, the Auslander-Reiten quiver of the Frobenius-Lusztig kernels is completely understood. For the wild cases we assumeG is not SL(2). It was known before that the connected components of the Auslander-Reiten quiver of a Frobenius-Lusztig kernel are attached to a (finite or innite) Dynkin diagramor a Euclidean diagram. For the Frobenius-Lusztig kernels we show that there are no components attached to finite Dynkin or Euclidean diagrams. In the height zero case we show that the components containing the restriction of a module for the infinite dimensionalquantum group U_zeta(g) are attached to A_infty. For the small half-quantum groups we show that the components containing compatibly graded modules, i.e. modules for u_zeta(b)U_zeta^0(g) are also attached to A_infty." @default.
- W788045324 created "2016-06-24" @default.
- W788045324 creator A5074552281 @default.
- W788045324 date "2012-05-21" @default.
- W788045324 modified "2023-09-26" @default.
- W788045324 title "Representation type and Auslander-Reiten theory of Frobenius-Lusztig kernels" @default.
- W788045324 cites W1565930783 @default.
- W788045324 cites W1568220884 @default.
- W788045324 cites W1604589878 @default.
- W788045324 cites W1666120112 @default.
- W788045324 cites W1784600267 @default.
- W788045324 cites W1964613809 @default.
- W788045324 cites W1984728191 @default.
- W788045324 cites W2027044855 @default.
- W788045324 cites W2039660064 @default.
- W788045324 cites W2050379993 @default.
- W788045324 cites W2060627270 @default.
- W788045324 cites W2093890854 @default.
- W788045324 cites W2116870865 @default.
- W788045324 cites W2963885887 @default.
- W788045324 cites W2964076396 @default.
- W788045324 cites W46359507 @default.
- W788045324 cites W604140817 @default.
- W788045324 cites W634610380 @default.
- W788045324 cites W68840436 @default.
- W788045324 cites W82161517 @default.
- W788045324 cites W2134619449 @default.
- W788045324 cites W2512716636 @default.
- W788045324 hasPublicationYear "2012" @default.
- W788045324 type Work @default.
- W788045324 sameAs 788045324 @default.
- W788045324 citedByCount "3" @default.
- W788045324 countsByYear W7880453242012 @default.
- W788045324 countsByYear W7880453242013 @default.
- W788045324 countsByYear W7880453242018 @default.
- W788045324 crossrefType "dissertation" @default.
- W788045324 hasAuthorship W788045324A5074552281 @default.
- W788045324 hasConcept C111472728 @default.
- W788045324 hasConcept C115624301 @default.
- W788045324 hasConcept C136119220 @default.
- W788045324 hasConcept C138885662 @default.
- W788045324 hasConcept C14394260 @default.
- W788045324 hasConcept C148647251 @default.
- W788045324 hasConcept C157480366 @default.
- W788045324 hasConcept C180950851 @default.
- W788045324 hasConcept C185592680 @default.
- W788045324 hasConcept C18903297 @default.
- W788045324 hasConcept C197273675 @default.
- W788045324 hasConcept C202444582 @default.
- W788045324 hasConcept C203436722 @default.
- W788045324 hasConcept C2777299769 @default.
- W788045324 hasConcept C2780586882 @default.
- W788045324 hasConcept C2780813799 @default.
- W788045324 hasConcept C31937215 @default.
- W788045324 hasConcept C33923547 @default.
- W788045324 hasConcept C41895202 @default.
- W788045324 hasConcept C78606066 @default.
- W788045324 hasConcept C8010536 @default.
- W788045324 hasConcept C86803240 @default.
- W788045324 hasConceptScore W788045324C111472728 @default.
- W788045324 hasConceptScore W788045324C115624301 @default.
- W788045324 hasConceptScore W788045324C136119220 @default.
- W788045324 hasConceptScore W788045324C138885662 @default.
- W788045324 hasConceptScore W788045324C14394260 @default.
- W788045324 hasConceptScore W788045324C148647251 @default.
- W788045324 hasConceptScore W788045324C157480366 @default.
- W788045324 hasConceptScore W788045324C180950851 @default.
- W788045324 hasConceptScore W788045324C185592680 @default.
- W788045324 hasConceptScore W788045324C18903297 @default.
- W788045324 hasConceptScore W788045324C197273675 @default.
- W788045324 hasConceptScore W788045324C202444582 @default.
- W788045324 hasConceptScore W788045324C203436722 @default.
- W788045324 hasConceptScore W788045324C2777299769 @default.
- W788045324 hasConceptScore W788045324C2780586882 @default.
- W788045324 hasConceptScore W788045324C2780813799 @default.
- W788045324 hasConceptScore W788045324C31937215 @default.
- W788045324 hasConceptScore W788045324C33923547 @default.
- W788045324 hasConceptScore W788045324C41895202 @default.
- W788045324 hasConceptScore W788045324C78606066 @default.
- W788045324 hasConceptScore W788045324C8010536 @default.
- W788045324 hasConceptScore W788045324C86803240 @default.
- W788045324 hasLocation W7880453241 @default.
- W788045324 hasOpenAccess W788045324 @default.
- W788045324 hasPrimaryLocation W7880453241 @default.
- W788045324 hasRelatedWork W1235662479 @default.
- W788045324 hasRelatedWork W1612096254 @default.
- W788045324 hasRelatedWork W1764435389 @default.
- W788045324 hasRelatedWork W1830573960 @default.
- W788045324 hasRelatedWork W1985274617 @default.
- W788045324 hasRelatedWork W2025614293 @default.
- W788045324 hasRelatedWork W2088234701 @default.
- W788045324 hasRelatedWork W2091841655 @default.
- W788045324 hasRelatedWork W2334234760 @default.
- W788045324 hasRelatedWork W2576364643 @default.
- W788045324 hasRelatedWork W2593662980 @default.
- W788045324 hasRelatedWork W2767884367 @default.
- W788045324 hasRelatedWork W2951455805 @default.
- W788045324 hasRelatedWork W2951620613 @default.