Matches in Wikidata for { <http://www.wikidata.org/entity/Q37462809> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- Q37462809 description "1975年學術文章" @default.
- Q37462809 description "article científic" @default.
- Q37462809 description "article scientifique" @default.
- Q37462809 description "articolo scientifico" @default.
- Q37462809 description "artigo científico" @default.
- Q37462809 description "artículu científicu espublizáu en 1975" @default.
- Q37462809 description "bilimsel makale" @default.
- Q37462809 description "scientific article published on December 1975" @default.
- Q37462809 description "vedecký článok" @default.
- Q37462809 description "vetenskaplig artikel" @default.
- Q37462809 description "videnskabelig artikel" @default.
- Q37462809 description "vědecký článek" @default.
- Q37462809 description "wetenschappelijk artikel" @default.
- Q37462809 description "wissenschaftlicher Artikel" @default.
- Q37462809 description "наукова стаття, опублікована в грудні 1975" @default.
- Q37462809 description "научни чланак" @default.
- Q37462809 description "مقالة علمية نشرت في ديسمبر 1975" @default.
- Q37462809 name "Analysis of the subtractive algorithm for greatest common divisors" @default.
- Q37462809 name "Analysis of the subtractive algorithm for greatest common divisors" @default.
- Q37462809 name "Analysis of the subtractive algorithm for greatest common divisors." @default.
- Q37462809 type Item @default.
- Q37462809 label "Analysis of the subtractive algorithm for greatest common divisors" @default.
- Q37462809 label "Analysis of the subtractive algorithm for greatest common divisors" @default.
- Q37462809 label "Analysis of the subtractive algorithm for greatest common divisors." @default.
- Q37462809 prefLabel "Analysis of the subtractive algorithm for greatest common divisors" @default.
- Q37462809 prefLabel "Analysis of the subtractive algorithm for greatest common divisors" @default.
- Q37462809 prefLabel "Analysis of the subtractive algorithm for greatest common divisors." @default.
- Q37462809 P1433 Q37462809-427EC7EA-B2CA-47CB-95A8-941828DA0B11 @default.
- Q37462809 P1476 Q37462809-1B6C84FE-0CD9-4B69-AF18-E38C33EEA062 @default.
- Q37462809 P2093 Q37462809-0617DC39-BB8A-4FFA-A412-B029603A9FB8 @default.
- Q37462809 P2093 Q37462809-4041AAFA-75A5-4536-90E0-BF516B53755E @default.
- Q37462809 P304 Q37462809-385F3178-4270-460B-A9AF-95B1CB249681 @default.
- Q37462809 P31 Q37462809-D4D4ABC9-B39A-414C-A727-FE23B3B23EED @default.
- Q37462809 P356 Q37462809-5BD70F3A-9030-4DB2-AF1F-23735868FEC0 @default.
- Q37462809 P407 Q37462809-281C47E8-3717-4124-B239-2EF4EF913051 @default.
- Q37462809 P433 Q37462809-EA144AAD-6D8A-4C57-BB14-457560459E88 @default.
- Q37462809 P478 Q37462809-B208F6AA-0834-4F9A-A070-8D7F9F29B12E @default.
- Q37462809 P577 Q37462809-403EF21E-DD0E-44D5-84AE-4F68FF6C4868 @default.
- Q37462809 P5875 Q37462809-D277AC1D-DF65-4A3A-821D-1907485CA98C @default.
- Q37462809 P6104 Q37462809-AB3BC446-A4D9-49C3-A8CA-89974405E209 @default.
- Q37462809 P698 Q37462809-D8B4DF38-6C47-4C12-9E29-D86BA424EACC @default.
- Q37462809 P819 Q37462809-E9750494-77D8-41A5-B7DF-E989DFBD8D76 @default.
- Q37462809 P894 Q37462809-FC2F3C82-F1CA-47AD-81D6-101E6B2DDA0B @default.
- Q37462809 P932 Q37462809-B5CD97A7-C0FE-48F9-B747-3D2C7D72F08D @default.
- Q37462809 P356 PNAS.72.12.4720 @default.
- Q37462809 P698 16592294 @default.
- Q37462809 P1433 Q1146531 @default.
- Q37462809 P1476 "Analysis of the subtractive algorithm for greatest common divisors" @default.
- Q37462809 P2093 "Knuth DE" @default.
- Q37462809 P2093 "Yao AC" @default.
- Q37462809 P304 "4720-4722" @default.
- Q37462809 P31 Q13442814 @default.
- Q37462809 P356 "10.1073/PNAS.72.12.4720" @default.
- Q37462809 P407 Q1860 @default.
- Q37462809 P433 "12" @default.
- Q37462809 P478 "72" @default.
- Q37462809 P577 "1975-12-01T00:00:00Z" @default.
- Q37462809 P5875 "7188410" @default.
- Q37462809 P6104 Q8487137 @default.
- Q37462809 P698 "16592294" @default.
- Q37462809 P819 "1975PNAS...72.4720Y" @default.
- Q37462809 P894 "0315.10005" @default.
- Q37462809 P932 "388801" @default.