Matches in Wikidata for { <http://www.wikidata.org/entity/Q3984001> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- Q3984001 description "Teorema dell'analisi matematica" @default.
- Q3984001 description "matematikai állítás" @default.
- Q3984001 description "theorem" @default.
- Q3984001 name "Cauchy's mean-value theorem" @default.
- Q3984001 name "Cauchy-féle középértéktétel" @default.
- Q3984001 name "Teorema di Cauchy" @default.
- Q3984001 name "משפט הערך הממוצע של קושי" @default.
- Q3984001 name "دیتانەی کۆشی" @default.
- Q3984001 name "قضیه کوشی" @default.
- Q3984001 name "コーシーの平均値定理" @default.
- Q3984001 name "柯西中值定理" @default.
- Q3984001 type Item @default.
- Q3984001 label "Cauchy's mean-value theorem" @default.
- Q3984001 label "Cauchy-féle középértéktétel" @default.
- Q3984001 label "Teorema di Cauchy" @default.
- Q3984001 label "משפט הערך הממוצע של קושי" @default.
- Q3984001 label "دیتانەی کۆشی" @default.
- Q3984001 label "قضیه کوشی" @default.
- Q3984001 label "コーシーの平均値定理" @default.
- Q3984001 label "柯西中值定理" @default.
- Q3984001 altLabel "Cauchy mean value theorem" @default.
- Q3984001 altLabel "Cauchy mean-value theorem" @default.
- Q3984001 altLabel "Cauchy's mean value theorem" @default.
- Q3984001 altLabel "Teorema degli incrementi finiti" @default.
- Q3984001 altLabel "extended mean value theorem" @default.
- Q3984001 altLabel "extended mean-value theorem" @default.
- Q3984001 prefLabel "Cauchy's mean-value theorem" @default.
- Q3984001 prefLabel "Cauchy-féle középértéktétel" @default.
- Q3984001 prefLabel "Teorema di Cauchy" @default.
- Q3984001 prefLabel "משפט הערך הממוצע של קושי" @default.
- Q3984001 prefLabel "دیتانەی کۆشی" @default.
- Q3984001 prefLabel "قضیه کوشی" @default.
- Q3984001 prefLabel "コーシーの平均値定理" @default.
- Q3984001 prefLabel "柯西中值定理" @default.
- Q3984001 P18 Q3984001-ac159746-44d3-4eca-0395-a969260cfcff @default.
- Q3984001 P2534 Q3984001-4b8643d4-4c52-1460-024a-77f53dea610d @default.
- Q3984001 P2534 Q3984001-f7841834-4dde-4c3c-aeab-7dc8c6713940 @default.
- Q3984001 P2671 Q3984001-45FBCB60-062D-4672-A986-70CA8F6F7A80 @default.
- Q3984001 P2671 Q3984001-4F7643E5-A3E9-4646-8660-C87FB1D29644 @default.
- Q3984001 P2812 Q3984001-d3ada6f2-46ac-c63f-0823-09d1ba9e4ffe @default.
- Q3984001 P31 Q3984001-c09515a6-4448-6b57-0a26-18e4aafd356f @default.
- Q3984001 P361 Q3984001-df4d7549-4880-faee-e48f-19c00b36eb9e @default.
- Q3984001 P6104 Q3984001-27F2C424-ABB8-450E-86C2-0F75C689841A @default.
- Q3984001 P7719 Q3984001-c72b52da-4df7-8f8a-0813-776d5678f3b1 @default.
- Q3984001 P2671 1215vt8r @default.
- Q3984001 P2671 122jkq1s @default.
- Q3984001 P18 Cauchy.svg @default.
- Q3984001 P2534 "<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\displaystyle \exists c\in (a,b):(f(b)-f(a))g'(c)=(g(b)-g(a))f'(c)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">∃<!-- ∃ --></mi> <mi>c</mi> <mo>∈<!-- ∈ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mo stretchy="false">(</mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>f</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mi>g</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>g</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <msup> <mi>f</mi> <mo>′</mo> </msup> <mo stretchy="false">(</mo> <mi>c</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \exists c\in (a,b):(f(b)-f(a))g'(c)=(g(b)-g(a))f'(c)}</annotation> </semantics> </math>" @default.
- Q3984001 P2671 "/g/1215vt8r" @default.
- Q3984001 P2671 "/g/122jkq1s" @default.
- Q3984001 P2812 "ExtendedMean-ValueTheorem" @default.
- Q3984001 P31 Q65943 @default.
- Q3984001 P361 Q189136 @default.
- Q3984001 P6104 Q8487137 @default.
- Q3984001 P7719 Q189136 @default.