Matches in Wikidata for { <http://www.wikidata.org/entity/Q5532458> ?p ?o ?g. }
Showing items 1 to 15 of
15
with 100 items per page.
- Q5532458 description "Begriff aus der Mathematik" @default.
- Q5532458 description "mathematical term" @default.
- Q5532458 name "generalized Verma module" @default.
- Q5532458 type Item @default.
- Q5532458 label "generalized Verma module" @default.
- Q5532458 prefLabel "generalized Verma module" @default.
- Q5532458 P2534 Q5532458-CEADE1EB-4977-4DE2-81F5-D0A23D277375 @default.
- Q5532458 P6104 Q5532458-0DD46D01-251C-4F8E-A753-B78815664301 @default.
- Q5532458 P6366 Q5532458-53A60032-3FCB-4181-B777-9402EE42805D @default.
- Q5532458 P646 Q5532458-6D63BE6A-6A1E-4DAF-AC5B-7AD5EB213222 @default.
- Q5532458 P6366 181750939 @default.
- Q5532458 P2534 "<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\displaystyle M_{\mathfrak {p}}(V)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal {U}}({\mathfrak {p}})}V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">U</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">g</mi> </mrow> </mrow> <mo stretchy="false">)</mo> <msub> <mo>⊗<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">U</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">p</mi> </mrow> </mrow> <mo stretchy="false">)</mo> </mrow> </msub> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{\mathfrak {p}}(V)={\mathcal {U}}({\mathfrak {g}})\otimes _{{\mathcal {U}}({\mathfrak {p}})}V}</annotation> </semantics> </math>" @default.
- Q5532458 P6104 Q8487137 @default.
- Q5532458 P6366 "181750939" @default.
- Q5532458 P646 "/m/0gy629" @default.