Matches in Wikidata for { <http://www.wikidata.org/entity/Q578874> ?p ?o ?g. }
- Q578874 description "Objekt der komplexen Analysis" @default.
- Q578874 description "manifold with an atlas of charts to the open unit disk in ℂⁿ, such that the transition maps are holomorphic" @default.
- Q578874 description "sternaĵo loke izomorfa al kompleksa vektora spaco" @default.
- Q578874 description "多様体上の各点の開近傍がCnの中の単位開円板への正則な座標変換を持つ多様体" @default.
- Q578874 name "complex manifold" @default.
- Q578874 name "complexe variëteit" @default.
- Q578874 name "kompleksa sternaĵo" @default.
- Q578874 name "kompleksna mnogoterost" @default.
- Q578874 name "komplekst mangfald" @default.
- Q578874 name "komplekst mangfold" @default.
- Q578874 name "komplexe Mannigfaltigkeit" @default.
- Q578874 name "komplexní varieta" @default.
- Q578874 name "variedad compleja" @default.
- Q578874 name "variedade complexa" @default.
- Q578874 name "varietat complexa" @default.
- Q578874 name "varietate complexă" @default.
- Q578874 name "varietà complessa" @default.
- Q578874 name "variété complexe" @default.
- Q578874 name "đa tạp phức" @default.
- Q578874 name "комплексний многовид" @default.
- Q578874 name "комплексно многуобразие" @default.
- Q578874 name "комплексное многообразие" @default.
- Q578874 name "Կոմպլեքս անալիտիկ բազմաձևություն" @default.
- Q578874 name "复流形" @default.
- Q578874 name "复流形" @default.
- Q578874 name "複流形" @default.
- Q578874 name "複素多様体" @default.
- Q578874 name "복소다양체" @default.
- Q578874 type Item @default.
- Q578874 label "complex manifold" @default.
- Q578874 label "complexe variëteit" @default.
- Q578874 label "kompleksa sternaĵo" @default.
- Q578874 label "kompleksna mnogoterost" @default.
- Q578874 label "komplekst mangfald" @default.
- Q578874 label "komplekst mangfold" @default.
- Q578874 label "komplexe Mannigfaltigkeit" @default.
- Q578874 label "komplexní varieta" @default.
- Q578874 label "variedad compleja" @default.
- Q578874 label "variedade complexa" @default.
- Q578874 label "varietat complexa" @default.
- Q578874 label "varietate complexă" @default.
- Q578874 label "varietà complessa" @default.
- Q578874 label "variété complexe" @default.
- Q578874 label "đa tạp phức" @default.
- Q578874 label "комплексний многовид" @default.
- Q578874 label "комплексно многуобразие" @default.
- Q578874 label "комплексное многообразие" @default.
- Q578874 label "Կոմպլեքս անալիտիկ բազմաձևություն" @default.
- Q578874 label "复流形" @default.
- Q578874 label "复流形" @default.
- Q578874 label "複流形" @default.
- Q578874 label "複素多様体" @default.
- Q578874 label "복소다양체" @default.
- Q578874 prefLabel "complex manifold" @default.
- Q578874 prefLabel "complexe variëteit" @default.
- Q578874 prefLabel "kompleksa sternaĵo" @default.
- Q578874 prefLabel "kompleksna mnogoterost" @default.
- Q578874 prefLabel "komplekst mangfald" @default.
- Q578874 prefLabel "komplekst mangfold" @default.
- Q578874 prefLabel "komplexe Mannigfaltigkeit" @default.
- Q578874 prefLabel "komplexní varieta" @default.
- Q578874 prefLabel "variedad compleja" @default.
- Q578874 prefLabel "variedade complexa" @default.
- Q578874 prefLabel "varietat complexa" @default.
- Q578874 prefLabel "varietate complexă" @default.
- Q578874 prefLabel "varietà complessa" @default.
- Q578874 prefLabel "variété complexe" @default.
- Q578874 prefLabel "đa tạp phức" @default.
- Q578874 prefLabel "комплексний многовид" @default.
- Q578874 prefLabel "комплексно многуобразие" @default.
- Q578874 prefLabel "комплексное многообразие" @default.
- Q578874 prefLabel "Կոմպլեքս անալիտիկ բազմաձևություն" @default.
- Q578874 prefLabel "复流形" @default.
- Q578874 prefLabel "复流形" @default.
- Q578874 prefLabel "複流形" @default.
- Q578874 prefLabel "複素多様体" @default.
- Q578874 prefLabel "복소다양체" @default.
- Q578874 P10283 Q578874-3AB0D042-4835-4890-9B6A-37058B0DDE4A @default.
- Q578874 P10376 Q578874-1c4cbdef-4c3d-5225-011e-449c541252bf @default.
- Q578874 P1343 Q578874-b5b69772-4127-46a1-94ed-7b260d188859 @default.
- Q578874 P2534 Q578874-1cabf436-4a5a-953e-1137-bf321b662785 @default.
- Q578874 P279 Q578874-23b985a7-4076-253a-e7a5-b0ce1355f67b @default.
- Q578874 P279 Q578874-4b143c89-4da7-c03e-1afc-4f6ad6551a49 @default.
- Q578874 P2812 Q578874-ef9c4f7d-43f9-8ffe-9c59-2ed9706df5fe @default.
- Q578874 P349 Q578874-AD35E51F-8A29-4AE3-B87F-8EA153B5FB48 @default.
- Q578874 P4215 Q578874-f0eb1188-4ca9-8c98-c674-2953b2e9bfe1 @default.
- Q578874 P6104 Q578874-E787F16D-7334-46AA-BB9C-655E39990017 @default.
- Q578874 P6366 Q578874-F9C30181-5A56-4A84-AA47-D1A5B7230B2E @default.
- Q578874 P646 Q578874-6805A267-A111-4C19-BA7C-C954560899CA @default.
- Q578874 P691 Q578874-6106DF61-A0CD-47C7-AA9A-F172EEC9256F @default.
- Q578874 P7554 Q578874-7855a0c2-4470-d147-a65d-007b8c5eb4ed @default.
- Q578874 P349 00563644 @default.
- Q578874 P6366 27602778 @default.
- Q578874 P10283 "C27602778" @default.
- Q578874 P10376 "mathematics/complex-manifold" @default.
- Q578874 P1343 Q124737632 @default.
- Q578874 P2534 "<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\displaystyle {\begin{aligned}&\left(M,(U_{i})_{i\in I},\phi _{i}\colon U_{i}\to \mathbb {C} ^{n}\right)\\&\bigcup _{i\in I}U_{i}=M\\&\forall {i,j}\in I\colon \phi _{j}\circ \phi _{i}^{-1}\in \Gamma ({\mathcal {O}}_{\phi _{i}(U_{i}\cap U_{j})}^{\oplus n})\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd /> <mtd> <mrow> <mo>(</mo> <mrow> <mi>M</mi> <mo>,</mo> <mo stretchy="false">(</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>:<!-- : --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">→<!-- → --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <munder> <mo>⋃<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>∈<!-- ∈ --></mo> <mi>I</mi> </mrow> </munder> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mi>M</mi> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi mathvariant="normal">∀<!-- ∀ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mo>∈<!-- ∈ --></mo> <mi>I</mi> <mo>:<!-- : --></mo> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>∘<!-- ∘ --></mo> <msubsup> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msubsup> <mo>∈<!-- ∈ --></mo> <mi mathvariant="normal">Γ<!-- Γ --></mi> <mo stretchy="false">(</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">O</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>ϕ<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>∩<!-- ∩ --></mo> <msub> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>⊕<!-- ⊕ --></mo> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}&\left(M,(U_{i})_{i\in I},\phi _{i}\colon U_{i}\to \mathbb {C} ^{n}\right)\\&\bigcup _{i\in I}U_{i}=M\\&\forall {i,j}\in I\colon \phi _{j}\circ \phi _{i}^{-1}\in \Gamma ({\mathcal {O}}_{\phi _{i}(U_{i}\cap U_{j})}^{\oplus n})\end{aligned}}}</annotation> </semantics> </math>" @default.
- Q578874 P279 Q2995691 @default.
- Q578874 P279 Q4751134 @default.
- Q578874 P2812 "ComplexManifold" @default.