Matches in Wikidata for { <http://www.wikidata.org/entity/Q7624404> ?p ?o ?g. }
Showing items 1 to 37 of
37
with 100 items per page.
- Q7624404 description "partaj diferencialaj ekvacioj pri 3-dimensia kompakta hermita sternaĵo (M,ω) kun hermita vektora fasko (V,h), kiuj estas kriterio pri la 4-dimensia supersimetrieco de la kompaktigo de 10-dimensia spactempo al 4-dimensia plata spactempo" @default.
- Q7624404 description "set of PDEs on a compact Hermtian 3-manifold (M,ω), a top holomorphic form Ω, and a Hermitian vector bundle (V,h); necessary and sufficient conditions for 4d spacetime supersymmetry for compactifications from 10 supergravity" @default.
- Q7624404 description "복소수 3차원 콤팩트 에르미트 다양체 (M,ω) 및 그 위의 에르미트 벡터 다발 (V,h)에 대한 편미분 방정식, 10차원 초중력을 4차원으로 콤팩트화하였을 때 시공간 초대칭이 존재할 필요 충분 조건" @default.
- Q7624404 name "Strominger's equations" @default.
- Q7624404 name "ecuaciones de Strominger" @default.
- Q7624404 name "ekvacioj de Strominger" @default.
- Q7624404 name "스트로민저 방정식" @default.
- Q7624404 type Item @default.
- Q7624404 label "Strominger's equations" @default.
- Q7624404 label "ecuaciones de Strominger" @default.
- Q7624404 label "ekvacioj de Strominger" @default.
- Q7624404 label "스트로민저 방정식" @default.
- Q7624404 prefLabel "Strominger's equations" @default.
- Q7624404 prefLabel "ecuaciones de Strominger" @default.
- Q7624404 prefLabel "ekvacioj de Strominger" @default.
- Q7624404 prefLabel "스트로민저 방정식" @default.
- Q7624404 P1269 Q7624404-43049405-4ef8-f361-682e-9f0c49b41822 @default.
- Q7624404 P1269 Q7624404-5c21f302-497d-05ea-c725-a41a641e4997 @default.
- Q7624404 P1269 Q7624404-fa08e70f-441f-7cff-7285-7ece4b5e3694 @default.
- Q7624404 P138 Q7624404-6ea588ab-4b46-1d48-bec1-b61194e8537e @default.
- Q7624404 P2534 Q7624404-c504b5e8-4943-35ef-d238-761e66c2e0a5 @default.
- Q7624404 P31 Q7624404-f6fc071e-43b8-7376-5245-dfc1f63a6497 @default.
- Q7624404 P575 Q7624404-2569aa5b-4a1b-b3d4-30ab-9af1328d3da1 @default.
- Q7624404 P6104 Q7624404-E49E1D9A-81E5-465E-8FE9-6F48CF62A4A1 @default.
- Q7624404 P6366 Q7624404-C07123C1-3AA5-4396-A626-084B2F297E0C @default.
- Q7624404 P646 Q7624404-9F71964F-A108-4EF3-A966-6932DC755932 @default.
- Q7624404 P6366 2781264407 @default.
- Q7624404 P1269 Q1140761 @default.
- Q7624404 P1269 Q1187705 @default.
- Q7624404 P1269 Q193442 @default.
- Q7624404 P138 Q507732 @default.
- Q7624404 P2534 "<math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\displaystyle {\begin{aligned}-\mathrm {i} \partial {\bar {\partial }}\omega &=\operatorname {tr} (F(h)\wedge F(h))-\operatorname {tr} (R^{-}(\omega )\wedge R^{-}(\omega ))\in \Omega ^{2,2}(M)\\\mathrm {d} ^{\dagger }\omega &=\mathrm {i} (\partial -{\bar {\partial }})\ln |\Omega |\in \Omega ^{3,1}(M)+\Omega ^{1,3}(M)\\\langle \omega ^{-1},F(h)\rangle &=0\in \Omega ^{0}(M;{\mathfrak {u}}(V))\\F(h)&\in \Omega ^{1,1}(M,{\mathfrak {u}}(V))\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mi>ω<!-- ω --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>tr</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mi>tr</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo>∧<!-- ∧ --></mo> <msup> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>ω<!-- ω --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>∈<!-- ∈ --></mo> <msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>,</mo> <mn>2</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>†<!-- † --></mo> </mrow> </msup> <mi>ω<!-- ω --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> </mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi mathvariant="normal">∂<!-- ∂ --></mi> <mo stretchy="false">¯<!-- ¯ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>∈<!-- ∈ --></mo> <msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>3</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo fence="false" stretchy="false">⟨<!-- ⟨ --></mo> <msup> <mi>ω<!-- ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">⟩<!-- ⟩ --></mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> <mo>∈<!-- ∈ --></mo> <msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>;</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mi>F</mi> <mo stretchy="false">(</mo> <mi>h</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>∈<!-- ∈ --></mo> <msup> <mi mathvariant="normal">Ω<!-- Ω --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>M</mi> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="fraktur">u</mi> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}-\mathrm {i} \partial {\bar {\partial }}\omega &=\operatorname {tr} (F(h)\wedge F(h))-\operatorname {tr} (R^{-}(\omega )\wedge R^{-}(\omega ))\in \Omega ^{2,2}(M)\\\mathrm {d} ^{\dagger }\omega &=\mathrm {i} (\partial -{\bar {\partial }})\ln |\Omega |\in \Omega ^{3,1}(M)+\Omega ^{1,3}(M)\\\langle \omega ^{-1},F(h)\rangle &=0\in \Omega ^{0}(M;{\mathfrak {u}}(V))\\F(h)&\in \Omega ^{1,1}(M,{\mathfrak {u}}(V))\end{aligned}}}</annotation> </semantics> </math>" @default.
- Q7624404 P31 Q271977 @default.
- Q7624404 P575 "1986-01-01T00:00:00Z" @default.
- Q7624404 P6104 Q8487137 @default.
- Q7624404 P6366 "2781264407" @default.
- Q7624404 P646 "/m/04mznhc" @default.