Matches in Wikidata for { <http://www.wikidata.org/entity/Q89646081> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- Q89646081 description "2020 թվականի փետրվարի 11-ին հրատարակված գիտական հոդված" @default.
- Q89646081 description "article scientifique publié en 2020" @default.
- Q89646081 description "artículu científicu espublizáu en febreru de 2020" @default.
- Q89646081 description "scientific article published on 11 February 2020" @default.
- Q89646081 description "wetenschappelijk artikel" @default.
- Q89646081 description "наукова стаття, опублікована 11 лютого 2020" @default.
- Q89646081 name "Comparing a multivariate response Bayesian random effects logistic regression model with a latent variable item response theory model for provider profiling on multiple binary indicators simultaneously" @default.
- Q89646081 name "Comparing a multivariate response Bayesian random effects logistic regression model with a latent variable item response theory model for provider profiling on multiple binary indicators simultaneously" @default.
- Q89646081 type Item @default.
- Q89646081 label "Comparing a multivariate response Bayesian random effects logistic regression model with a latent variable item response theory model for provider profiling on multiple binary indicators simultaneously" @default.
- Q89646081 label "Comparing a multivariate response Bayesian random effects logistic regression model with a latent variable item response theory model for provider profiling on multiple binary indicators simultaneously" @default.
- Q89646081 prefLabel "Comparing a multivariate response Bayesian random effects logistic regression model with a latent variable item response theory model for provider profiling on multiple binary indicators simultaneously" @default.
- Q89646081 prefLabel "Comparing a multivariate response Bayesian random effects logistic regression model with a latent variable item response theory model for provider profiling on multiple binary indicators simultaneously" @default.
- Q89646081 P1433 Q89646081-35B44102-BF30-4607-AC08-3DB0516C4C15 @default.
- Q89646081 P1476 Q89646081-E4DC055C-560D-42B4-9517-B729B54587F2 @default.
- Q89646081 P2093 Q89646081-7350B078-AF20-438E-84D9-25C6CCC3C67C @default.
- Q89646081 P2093 Q89646081-E8BBC9DC-A700-4EBF-AE51-47FB0F9EE253 @default.
- Q89646081 P2860 Q89646081-1AE299A1-6859-4B91-BD58-A9D592060681 @default.
- Q89646081 P2860 Q89646081-2C3A17BE-2369-4AC5-8471-0D301ED510E3 @default.
- Q89646081 P2860 Q89646081-3B3E824A-00BA-4C8B-B789-5ECC8B7EDDDC @default.
- Q89646081 P2860 Q89646081-52739974-96E9-433E-BD18-2888CC35EA49 @default.
- Q89646081 P2860 Q89646081-55FC65BB-0D06-44DD-BF9D-9D75E61B70D3 @default.
- Q89646081 P2860 Q89646081-59F3BBD6-782C-4C25-9236-15F9D4684E37 @default.
- Q89646081 P2860 Q89646081-74E5DEF8-F121-4B68-8097-99CD16167B67 @default.
- Q89646081 P2860 Q89646081-791E5739-AF3C-4960-9680-F96EACC479B1 @default.
- Q89646081 P2860 Q89646081-AA94ED34-93FD-429F-9C6E-82053C317AAF @default.
- Q89646081 P2860 Q89646081-E4BBC6FF-1548-4600-A702-1A39C0E2F34A @default.
- Q89646081 P2860 Q89646081-FF693685-5EE7-45F9-B2F2-F83BB332865A @default.
- Q89646081 P304 Q89646081-B2E69F00-5FC9-42B2-9F6E-70CCFE02BDD1 @default.
- Q89646081 P31 Q89646081-7859D0AA-7C86-4592-A29C-360BC22D6E4C @default.
- Q89646081 P356 Q89646081-29405437-D361-46F4-9CA0-F913BBCA9CCF @default.
- Q89646081 P433 Q89646081-810569D4-7789-4E5B-8B8A-3540DFBB1151 @default.
- Q89646081 P478 Q89646081-60257140-03C9-404A-A917-61E3DBD31DEA @default.
- Q89646081 P50 Q89646081-639D6CBD-6349-48C5-A2CE-F9068DD7E503 @default.
- Q89646081 P577 Q89646081-4BA27311-08D2-467B-BE2C-06E7D1288188 @default.
- Q89646081 P698 Q89646081-A3D57B0B-9515-45C3-8202-C63C5F184504 @default.
- Q89646081 P921 Q89646081-278627E6-2B21-468E-87C1-D44DEB3AF252 @default.
- Q89646081 P932 Q89646081-66CF7FCE-C6FC-4FAC-8985-4C352EAF9AC7 @default.
- Q89646081 P356 SIM.8484 @default.
- Q89646081 P698 32043653 @default.
- Q89646081 P1433 Q7604438 @default.
- Q89646081 P1476 "Comparing a multivariate response Bayesian random effects logistic regression model with a latent variable item response theory model for provider profiling on multiple binary indicators simultaneously" @default.
- Q89646081 P2093 "Douglas S Lee" @default.
- Q89646081 P2093 "George Leckie" @default.
- Q89646081 P2860 Q30956058 @default.
- Q89646081 P2860 Q33333959 @default.
- Q89646081 P2860 Q36515580 @default.
- Q89646081 P2860 Q38377589 @default.
- Q89646081 P2860 Q38764472 @default.
- Q89646081 P2860 Q44288588 @default.
- Q89646081 P2860 Q44928926 @default.
- Q89646081 P2860 Q52024768 @default.
- Q89646081 P2860 Q52067191 @default.
- Q89646081 P2860 Q52249515 @default.
- Q89646081 P2860 Q77956486 @default.
- Q89646081 P304 "1390-1406" @default.
- Q89646081 P31 Q13442814 @default.
- Q89646081 P356 "10.1002/SIM.8484" @default.
- Q89646081 P433 "9" @default.
- Q89646081 P478 "39" @default.
- Q89646081 P50 Q37384108 @default.
- Q89646081 P577 "2020-02-11T00:00:00Z" @default.
- Q89646081 P698 "32043653" @default.
- Q89646081 P921 Q1952580 @default.
- Q89646081 P932 "7187268" @default.