Matches in Wikidata for { <http://www.wikidata.org/entity/Q90856182> ?p ?o ?g. }
Showing items 1 to 46 of
46
with 100 items per page.
- Q90856182 description "article scientifique publié en 2019" @default.
- Q90856182 description "artículu científicu espublizáu n'ochobre de 2019" @default.
- Q90856182 description "scientific article published on 21 October 2019" @default.
- Q90856182 description "wetenschappelijk artikel" @default.
- Q90856182 description "наукова стаття, опублікована 21 жовтня 2019" @default.
- Q90856182 name "A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping" @default.
- Q90856182 name "A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping" @default.
- Q90856182 type Item @default.
- Q90856182 label "A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping" @default.
- Q90856182 label "A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping" @default.
- Q90856182 prefLabel "A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping" @default.
- Q90856182 prefLabel "A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping" @default.
- Q90856182 P1104 Q90856182-E8396FBE-DD2C-44F3-BAF1-AC438FFA21FB @default.
- Q90856182 P1433 Q90856182-903AAF70-5FF1-450E-8033-5F9A02E13A6D @default.
- Q90856182 P1476 Q90856182-5061E2F1-EA1B-42E5-8A3E-3BE9A8592DBE @default.
- Q90856182 P2093 Q90856182-0B0EBC73-32EE-484C-8F11-4F701A613792 @default.
- Q90856182 P2093 Q90856182-2E4FD97A-12A3-4FA4-98CA-C7B7079ED57E @default.
- Q90856182 P2093 Q90856182-A46C782B-9C63-456E-BFDD-22122A0541B7 @default.
- Q90856182 P304 Q90856182-DA1E06F0-E808-4D95-B929-6621E1DA6F2E @default.
- Q90856182 P31 Q90856182-447DD325-5A2B-46C3-B8FE-BE9CAA1D33A5 @default.
- Q90856182 P356 Q90856182-DA36BC16-5B1C-4C0F-A266-825E1E608B5E @default.
- Q90856182 P433 Q90856182-EF64B4BE-C755-4097-BE11-8F82EE19EDD5 @default.
- Q90856182 P478 Q90856182-CE79A919-D85F-49E5-A8CE-54732FC462E3 @default.
- Q90856182 P50 Q90856182-39EF0F67-30FD-44FA-B4A4-2AE40E3BAEB1 @default.
- Q90856182 P50 Q90856182-C373F279-36E7-4788-89AF-11BE287F1A9F @default.
- Q90856182 P577 Q90856182-63A8D76D-8B84-47B2-9C60-1CFD7C53C022 @default.
- Q90856182 P698 Q90856182-18CBA5D5-744A-4A6D-B13D-A8F70342A3FD @default.
- Q90856182 P921 Q90856182-21B40025-DAD1-4F08-A78E-A4A035AB18E0 @default.
- Q90856182 P356 PP.19.00728 @default.
- Q90856182 P698 31636105 @default.
- Q90856182 P1104 "+10" @default.
- Q90856182 P1433 Q3906288 @default.
- Q90856182 P1476 "A Deep Learning-Based Approach for High-Throughput Hypocotyl Phenotyping" @default.
- Q90856182 P2093 "Orsolya Dobos" @default.
- Q90856182 P2093 "Peter Horvath" @default.
- Q90856182 P2093 "Tivadar Danka" @default.
- Q90856182 P304 "1415-1424" @default.
- Q90856182 P31 Q13442814 @default.
- Q90856182 P356 "10.1104/PP.19.00728" @default.
- Q90856182 P433 "4" @default.
- Q90856182 P478 "181" @default.
- Q90856182 P50 Q1214157 @default.
- Q90856182 P50 Q79967300 @default.
- Q90856182 P577 "2019-10-21T00:00:00Z" @default.
- Q90856182 P698 "31636105" @default.
- Q90856182 P921 Q197536 @default.