Matches in Wikidata for { <http://www.wikidata.org/entity/Q92056687> ?p ?o ?g. }
Showing items 1 to 41 of
41
with 100 items per page.
- Q92056687 description "article scientifique publié en 2019" @default.
- Q92056687 description "artículu científicu espublizáu n'avientu de 2019" @default.
- Q92056687 description "im Dezember 2019 veröffentlichter wissenschaftlicher Artikel" @default.
- Q92056687 description "scientific article published on 06 December 2019" @default.
- Q92056687 description "wetenschappelijk artikel" @default.
- Q92056687 description "наукова стаття, опублікована 6 грудня 2019" @default.
- Q92056687 name "Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN)" @default.
- Q92056687 name "Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN)" @default.
- Q92056687 type Item @default.
- Q92056687 label "Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN)" @default.
- Q92056687 label "Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN)" @default.
- Q92056687 prefLabel "Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN)" @default.
- Q92056687 prefLabel "Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN)" @default.
- Q92056687 P1433 Q92056687-B3CCA6E4-7FD6-47CC-AD55-8736B92ED157 @default.
- Q92056687 P1476 Q92056687-DD450540-1005-41E1-BF46-71E9000186AB @default.
- Q92056687 P2093 Q92056687-615A4289-B1AF-45F6-B45C-02A6A6B508F4 @default.
- Q92056687 P2093 Q92056687-9078156D-8F9F-4D89-9E05-4AC121EBB70E @default.
- Q92056687 P2093 Q92056687-AD9AB1E1-413C-4E15-B5F1-EAC0B386B746 @default.
- Q92056687 P304 Q92056687-08B50B31-3BCD-467A-B858-0D91F8BC57FE @default.
- Q92056687 P31 Q92056687-F1F7353D-5B7B-4F4B-B045-E45A9A176676 @default.
- Q92056687 P356 Q92056687-A35FF7E8-D0F2-4226-893D-01B192FFAAC3 @default.
- Q92056687 P4510 Q92056687-35067B51-48E2-405D-BDE4-D984EAB28DC5 @default.
- Q92056687 P478 Q92056687-C7391C0F-01F8-40B2-83B4-85B3900B857F @default.
- Q92056687 P577 Q92056687-4B0D81DE-9CFB-4028-BF73-76D39CFF892C @default.
- Q92056687 P698 Q92056687-8A219564-477A-40C0-AADF-BB2D561BFF47 @default.
- Q92056687 P921 Q92056687-CF8B5A77-FBC2-4795-8CEE-D4106668E6E8 @default.
- Q92056687 P356 J.JHAZMAT.2019.121769 @default.
- Q92056687 P698 31848088 @default.
- Q92056687 P1433 Q15757703 @default.
- Q92056687 P1476 "Bio-inspired, high, and fast adsorption of tetracycline from aqueous media using Fe3O4-g-CN@PEI-β-CD nanocomposite: Modeling by response surface methodology (RSM), boosted regression tree (BRT), and general regression neural network (GRNN)" @default.
- Q92056687 P2093 "Maryam Foroughi" @default.
- Q92056687 P2093 "Mohammad Hossein Ahmadi Azqhandi" @default.
- Q92056687 P2093 "Somayeh Kakhki" @default.
- Q92056687 P304 "121769" @default.
- Q92056687 P31 Q13442814 @default.
- Q92056687 P356 "10.1016/J.JHAZMAT.2019.121769" @default.
- Q92056687 P4510 Q3136137 @default.
- Q92056687 P478 "388" @default.
- Q92056687 P577 "2019-12-06T00:00:00Z" @default.
- Q92056687 P698 "31848088" @default.
- Q92056687 P921 Q193045 @default.