Matches in Wikidata for { <http://www.wikidata.org/entity/Q92962798> ?p ?o ?g. }
Showing items 1 to 41 of
41
with 100 items per page.
- Q92962798 description "article scientifique publié en 2020" @default.
- Q92962798 description "artículu científicu espublizáu en xineru de 2020" @default.
- Q92962798 description "scientific article published on 21 January 2020" @default.
- Q92962798 description "wetenschappelijk artikel" @default.
- Q92962798 description "наукова стаття, опублікована 21 січня 2020" @default.
- Q92962798 name "SACNN: Self-Attention Convolutional Neural Network for Low-Dose CT Denoising with Self-supervised Perceptual Loss Network" @default.
- Q92962798 name "SACNN: Self-Attention Convolutional Neural Network for Low-Dose CT Denoising with Self-supervised Perceptual Loss Network" @default.
- Q92962798 type Item @default.
- Q92962798 label "SACNN: Self-Attention Convolutional Neural Network for Low-Dose CT Denoising with Self-supervised Perceptual Loss Network" @default.
- Q92962798 label "SACNN: Self-Attention Convolutional Neural Network for Low-Dose CT Denoising with Self-supervised Perceptual Loss Network" @default.
- Q92962798 prefLabel "SACNN: Self-Attention Convolutional Neural Network for Low-Dose CT Denoising with Self-supervised Perceptual Loss Network" @default.
- Q92962798 prefLabel "SACNN: Self-Attention Convolutional Neural Network for Low-Dose CT Denoising with Self-supervised Perceptual Loss Network" @default.
- Q92962798 P1433 Q92962798-97615027-05C8-429A-ADEB-0ED01F66D316 @default.
- Q92962798 P1476 Q92962798-63536B38-8F1F-4F36-B216-E0E3AB9CF666 @default.
- Q92962798 P2093 Q92962798-08435EDA-7EFF-4015-B993-0636CEC5B7B6 @default.
- Q92962798 P2093 Q92962798-BCDD29E3-923A-48EA-B7B9-21B8D203BC49 @default.
- Q92962798 P2093 Q92962798-EBAE4F66-AD47-4B03-AFD4-99ED0B46FD38 @default.
- Q92962798 P2093 Q92962798-ED90D5DB-D42D-427C-91F3-9F9F1E6BCB3B @default.
- Q92962798 P31 Q92962798-A815458A-4370-48F5-8118-D58256D188E5 @default.
- Q92962798 P356 Q92962798-F36192BA-5A19-4515-A41A-AA1EAF9468BC @default.
- Q92962798 P50 Q92962798-6F587FF7-58BB-4049-9A74-9238414BA187 @default.
- Q92962798 P577 Q92962798-381AB636-3DF8-4614-9564-5A3997C0F52F @default.
- Q92962798 P698 Q92962798-BCF6913A-D9CA-4970-BE15-E73B9F9E6B20 @default.
- Q92962798 P8978 Q92962798-5C30D85F-B05C-4B84-9F30-97728BB9F8CB @default.
- Q92962798 P921 Q92962798-A6233B5B-9A84-46C0-9DEF-E56EA7DFAE61 @default.
- Q92962798 P356 TMI.2020.2968472 @default.
- Q92962798 P698 31985412 @default.
- Q92962798 P8978 LiHXCG20 @default.
- Q92962798 P1433 Q15751775 @default.
- Q92962798 P1476 "SACNN: Self-Attention Convolutional Neural Network for Low-Dose CT Denoising with Self-supervised Perceptual Loss Network" @default.
- Q92962798 P2093 "Jason Cong" @default.
- Q92962798 P2093 "Meng Li" @default.
- Q92962798 P2093 "Wen Gao" @default.
- Q92962798 P2093 "Xiaodong Xie" @default.
- Q92962798 P31 Q13442814 @default.
- Q92962798 P356 "10.1109/TMI.2020.2968472" @default.
- Q92962798 P50 Q59787754 @default.
- Q92962798 P577 "2020-01-21T00:00:00Z" @default.
- Q92962798 P698 "31985412" @default.
- Q92962798 P8978 "journals/tmi/LiHXCG20" @default.
- Q92962798 P921 Q17084460 @default.