Matches in Wikidata for { <http://www.wikidata.org/entity/Q93128539> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- Q93128539 description "article scientifique publié en 2019" @default.
- Q93128539 description "artículu científicu espublizáu en xunu de 2019" @default.
- Q93128539 description "im Juni 2019 veröffentlichter wissenschaftlicher Artikel" @default.
- Q93128539 description "scientific article published on 26 June 2019" @default.
- Q93128539 description "wetenschappelijk artikel" @default.
- Q93128539 description "наукова стаття, опублікована 26 червня 2019" @default.
- Q93128539 name "Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention" @default.
- Q93128539 name "Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention" @default.
- Q93128539 type Item @default.
- Q93128539 label "Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention" @default.
- Q93128539 label "Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention" @default.
- Q93128539 prefLabel "Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention" @default.
- Q93128539 prefLabel "Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention" @default.
- Q93128539 P1433 Q93128539-9119E358-E169-4493-93BC-7E182F969DD0 @default.
- Q93128539 P1476 Q93128539-BF996A9F-9F23-4752-8A64-6768CDBC7C8F @default.
- Q93128539 P2093 Q93128539-09A63794-E980-4BA4-9C23-1063A5262A03 @default.
- Q93128539 P2093 Q93128539-2B7777E5-7D1A-4A16-8883-3D624CBFA1E8 @default.
- Q93128539 P2093 Q93128539-B05A9E73-C71F-4FC3-8BAE-0FD054527FE9 @default.
- Q93128539 P2093 Q93128539-BD67F0CB-DAFA-494E-90C7-9948C5F1EA8D @default.
- Q93128539 P2093 Q93128539-CEF00BFF-E3FB-40B7-9A8A-78949E973858 @default.
- Q93128539 P2093 Q93128539-DAE73271-6319-41B9-A07B-8EFA861D5DE1 @default.
- Q93128539 P2093 Q93128539-E71D54B3-BABA-4C42-85F6-BF5156B99638 @default.
- Q93128539 P2093 Q93128539-EE5DC033-4436-4C03-8868-2E5476C525FA @default.
- Q93128539 P2093 Q93128539-F85632ED-8C24-4804-AC8B-474D53CEED34 @default.
- Q93128539 P2093 Q93128539-FF4C508F-216C-401F-8C02-40A6D8FABF1D @default.
- Q93128539 P304 Q93128539-FACD3731-50F3-43E6-B45C-D0A3270F6999 @default.
- Q93128539 P31 Q93128539-D34848DB-F169-458D-94BB-CFC18E7AA5C9 @default.
- Q93128539 P356 Q93128539-5AE7AF85-6CBB-402C-B079-4965CA6F38A5 @default.
- Q93128539 P433 Q93128539-5E5CF25C-B937-483C-8E85-3700A5BC1458 @default.
- Q93128539 P478 Q93128539-F0689E69-3262-48CD-88D7-789FDF4307C8 @default.
- Q93128539 P50 Q93128539-D79DE7BE-4335-427C-A431-96CBD00754D5 @default.
- Q93128539 P577 Q93128539-E20DFA02-7715-4975-B0B1-A490E7838D92 @default.
- Q93128539 P698 Q93128539-CAC3B404-7F27-4CBD-9FF1-2FC259794787 @default.
- Q93128539 P921 Q93128539-2B177C36-857D-4EC6-B291-ED11A9E646C9 @default.
- Q93128539 P356 J.JCIN.2019.02.035 @default.
- Q93128539 P698 31255564 @default.
- Q93128539 P1433 Q15816248 @default.
- Q93128539 P1476 "Leveraging Machine Learning Techniques to Forecast Patient Prognosis After Percutaneous Coronary Intervention" @default.
- Q93128539 P2093 "Chad J Zack" @default.
- Q93128539 P2093 "Conor Senecal" @default.
- Q93128539 P2093 "Malcolm R Bell" @default.
- Q93128539 P2093 "Mandeep Singh" @default.
- Q93128539 P2093 "R Jay Widmer" @default.
- Q93128539 P2093 "Rajiv Gulati" @default.
- Q93128539 P2093 "Ryan Lennon" @default.
- Q93128539 P2093 "Yaakov Metzger" @default.
- Q93128539 P2093 "Yaron Kinar" @default.
- Q93128539 P2093 "Yoav Bar-Sinai" @default.
- Q93128539 P304 "1304-1311" @default.
- Q93128539 P31 Q13442814 @default.
- Q93128539 P356 "10.1016/J.JCIN.2019.02.035" @default.
- Q93128539 P433 "14" @default.
- Q93128539 P478 "12" @default.
- Q93128539 P50 Q77286771 @default.
- Q93128539 P577 "2019-06-26T00:00:00Z" @default.
- Q93128539 P698 "31255564" @default.
- Q93128539 P921 Q2539 @default.