Matches in Wikidata for { <http://www.wikidata.org/entity/Q99604199> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- Q99604199 description "article scientifique publié en 2020" @default.
- Q99604199 description "artículu científicu espublizáu en setiembre de 2020" @default.
- Q99604199 description "scientific article published on 19 September 2020" @default.
- Q99604199 description "wetenschappelijk artikel" @default.
- Q99604199 description "наукова стаття, опублікована 19 вересня 2020" @default.
- Q99604199 name "M3DISEEN: A Novel Machine Learning Approach for Predicting the 3D Printability of Medicines" @default.
- Q99604199 name "M3DISEEN: A Novel Machine Learning Approach for Predicting the 3D Printability of Medicines" @default.
- Q99604199 type Item @default.
- Q99604199 label "M3DISEEN: A Novel Machine Learning Approach for Predicting the 3D Printability of Medicines" @default.
- Q99604199 label "M3DISEEN: A Novel Machine Learning Approach for Predicting the 3D Printability of Medicines" @default.
- Q99604199 prefLabel "M3DISEEN: A Novel Machine Learning Approach for Predicting the 3D Printability of Medicines" @default.
- Q99604199 prefLabel "M3DISEEN: A Novel Machine Learning Approach for Predicting the 3D Printability of Medicines" @default.
- Q99604199 P1433 Q99604199-5E4B5235-DCC8-41E1-A7D4-F34E393A5767 @default.
- Q99604199 P1476 Q99604199-902DC09B-2972-43BB-BDD5-D9662B46C350 @default.
- Q99604199 P2093 Q99604199-0F112D66-0987-4029-B07C-8F382183FEAD @default.
- Q99604199 P2093 Q99604199-4702DC2C-47D7-4E19-B6C8-3BD2720BBE5A @default.
- Q99604199 P2093 Q99604199-6CD0F2E6-9FB2-4C67-8039-5DA3CCC4ADF9 @default.
- Q99604199 P2093 Q99604199-7D1CADFB-B780-4844-8313-AF003E2CB017 @default.
- Q99604199 P2093 Q99604199-802308AD-8886-495D-BCBC-DE85052BD598 @default.
- Q99604199 P2093 Q99604199-A0002B7A-1F3D-40A2-B0CC-80C79C6E6102 @default.
- Q99604199 P2093 Q99604199-C2149074-EA9B-45F3-9DE6-526D8FE9FD20 @default.
- Q99604199 P2093 Q99604199-E7FDF39C-332D-45E5-AF9B-C407B949E8F5 @default.
- Q99604199 P2093 Q99604199-F0687B5E-4A22-467E-9CD7-0755B1CC5801 @default.
- Q99604199 P304 Q99604199-C103F52F-D362-40BF-9397-A13A15FEED0F @default.
- Q99604199 P31 Q99604199-89D2D32E-877D-4070-BE39-CA193F2DD53A @default.
- Q99604199 P356 Q99604199-633B6350-4263-473E-819D-977CFA6E140A @default.
- Q99604199 P577 Q99604199-EB1A7E3E-06CC-423C-BCF2-7D05FD7A9ECE @default.
- Q99604199 P698 Q99604199-7EF56003-CD12-4B4C-862B-38CA16EAC0BD @default.
- Q99604199 P921 Q99604199-F6EDD68E-6EB1-406F-BB82-99A3EA8691B4 @default.
- Q99604199 P356 J.IJPHARM.2020.119837 @default.
- Q99604199 P698 32961295 @default.
- Q99604199 P1433 Q6051539 @default.
- Q99604199 P1476 "M3DISEEN: A Novel Machine Learning Approach for Predicting the 3D Printability of Medicines" @default.
- Q99604199 P2093 "Abdul W Basit" @default.
- Q99604199 P2093 "Brais Muñiz Castro" @default.
- Q99604199 P2093 "Francesca K H Gavins" @default.
- Q99604199 P2093 "Gilberto Pérez" @default.
- Q99604199 P2093 "Jun Jie Ong" @default.
- Q99604199 P2093 "Moe Elbadawi" @default.
- Q99604199 P2093 "Pedro Cabalar" @default.
- Q99604199 P2093 "Simon Gaisford" @default.
- Q99604199 P2093 "Álvaro Goyanes" @default.
- Q99604199 P304 "119837" @default.
- Q99604199 P31 Q13442814 @default.
- Q99604199 P356 "10.1016/J.IJPHARM.2020.119837" @default.
- Q99604199 P577 "2020-09-19T00:00:00Z" @default.
- Q99604199 P698 "32961295" @default.
- Q99604199 P921 Q2539 @default.