Matches in SemOpenAlex for { <https://semopenalex.org/work/W1002839908> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W1002839908 abstract "We reintroduce the Riemann-Cartan-Weyl geometries with trace torsion and their associated Brownian motions on spacetime to extend them to Brownian motions on the tangent bundle and exterior powers of them. We characterize the diffusion of differential forms, for the case of manifolds without boundaries and the smooth boundary case. We present implicit representations for the Navier-Stokes equations (NS) for an incompressible fluid in a smooth compact manifold without boundary as well as for the kinematic dynamo equation (KDE, for short) of magnetohydrodynamics. We derive these representations from stochastic differential geometry, unifying gauge theoretical structures and the stochastic analysis on manifolds (the Ito-Elworthy formula for differential forms. From the diffeomorphism property of the random flow given by the scalar lagrangian representations for the viscous and magnetized fluids, we derive the representations for NS and KDE, using the generalized Hamilton and Ricci random flows (for arbitrary compact manifolds without boundary), and the gradient diffusion processes (for isometric immersions on Euclidean space of these manifolds). We solve implicitly this equations in 2D and 3D. Continuing with this method, we prove that NS and KDE in any dimension other than 1, can be represented as purely (geometrical) noise processes, with diffusion tensor depending on the fluid�s velocity, and we represent the solutions of NS and KDE in terms of these processes. We discuss the relations between these representations and the problem of infinite-time existance of solutions of NS and KDE. We finally discuss the relations between this approach with the low dimensional chaotic dynamics describing the asymptotic regime of the solutions of NS. We present the random symplectic theory for the Brownian motions generated by these Riemann-Cartan-Weyl geometries, and the associated random Poincare-Cartan invariants. We apply this to the Navier-Stokes and kinematic dynamo equations. In the case of 2D and 3D, we solve the Hamiltonian equations." @default.
- W1002839908 created "2016-06-24" @default.
- W1002839908 creator A5020579428 @default.
- W1002839908 date "2007-03-01" @default.
- W1002839908 modified "2023-09-23" @default.
- W1002839908 title "Viscous and Magneto Fluid-Dynamics, Torsion Fields, and Brownian Motions Representations on Compact Manifolds and the Random Symplectic Invariants" @default.
- W1002839908 hasPublicationYear "2007" @default.
- W1002839908 type Work @default.
- W1002839908 sameAs 1002839908 @default.
- W1002839908 citedByCount "0" @default.
- W1002839908 crossrefType "posted-content" @default.
- W1002839908 hasAuthorship W1002839908A5020579428 @default.
- W1002839908 hasConcept C105795698 @default.
- W1002839908 hasConcept C112401455 @default.
- W1002839908 hasConcept C121332964 @default.
- W1002839908 hasConcept C134306372 @default.
- W1002839908 hasConcept C168619227 @default.
- W1002839908 hasConcept C2524010 @default.
- W1002839908 hasConcept C33923547 @default.
- W1002839908 hasConcept C47556283 @default.
- W1002839908 hasConcept C57691317 @default.
- W1002839908 hasConcept C74650414 @default.
- W1002839908 hasConceptScore W1002839908C105795698 @default.
- W1002839908 hasConceptScore W1002839908C112401455 @default.
- W1002839908 hasConceptScore W1002839908C121332964 @default.
- W1002839908 hasConceptScore W1002839908C134306372 @default.
- W1002839908 hasConceptScore W1002839908C168619227 @default.
- W1002839908 hasConceptScore W1002839908C2524010 @default.
- W1002839908 hasConceptScore W1002839908C33923547 @default.
- W1002839908 hasConceptScore W1002839908C47556283 @default.
- W1002839908 hasConceptScore W1002839908C57691317 @default.
- W1002839908 hasConceptScore W1002839908C74650414 @default.
- W1002839908 hasLocation W10028399081 @default.
- W1002839908 hasOpenAccess W1002839908 @default.
- W1002839908 hasPrimaryLocation W10028399081 @default.
- W1002839908 hasRelatedWork W1501566463 @default.
- W1002839908 hasRelatedWork W1604793510 @default.
- W1002839908 hasRelatedWork W1931690037 @default.
- W1002839908 hasRelatedWork W1965345092 @default.
- W1002839908 hasRelatedWork W2056925732 @default.
- W1002839908 hasRelatedWork W2060784873 @default.
- W1002839908 hasRelatedWork W2070067136 @default.
- W1002839908 hasRelatedWork W2080099219 @default.
- W1002839908 hasRelatedWork W2090549233 @default.
- W1002839908 hasRelatedWork W2177147205 @default.
- W1002839908 hasRelatedWork W245163525 @default.
- W1002839908 hasRelatedWork W2487657998 @default.
- W1002839908 hasRelatedWork W2949417977 @default.
- W1002839908 hasRelatedWork W2952760514 @default.
- W1002839908 hasRelatedWork W3100600508 @default.
- W1002839908 hasRelatedWork W3119212712 @default.
- W1002839908 hasRelatedWork W3147666566 @default.
- W1002839908 hasRelatedWork W3189884534 @default.
- W1002839908 hasRelatedWork W3196625417 @default.
- W1002839908 hasRelatedWork W68554409 @default.
- W1002839908 isParatext "false" @default.
- W1002839908 isRetracted "false" @default.
- W1002839908 magId "1002839908" @default.
- W1002839908 workType "article" @default.