Matches in SemOpenAlex for { <https://semopenalex.org/work/W1002924229> ?p ?o ?g. }
- W1002924229 endingPage "28" @default.
- W1002924229 startingPage "21" @default.
- W1002924229 abstract "Only using biodegradable polymers is possible to develop new regenerative concepts for implantable biomedical devices, to be used in tissue engineering, where the biomaterials will temporarily replace the biomechanical functions, and these will be gradually transferred to the neo-tissue formed over the scaffolds, while the materials will degrade and ultimately erode and be assimilated by the host tissue. These types of scaffold concepts find many applications, in the market or under study, for the regeneration of non vascular tissues, such as cartilage, vascular stents, ligaments, etc. However, there still is a lack of design and dimensioning tools for these devices and methods to predict and simulate the mechanical behavior during hydrolytic degradation. Many times, the convergence to an optimal solution is obtained by iterative “trial and error”, becoming a costly project. It is common to use Finite Element Methods (FEM) in problems with complex geometries and boundary conditions, enabling the simulation of the 3D mechanical behavior of the device in the initial step of degradation. In the ambit of this context, the main scope of this work is to review the current methodologies able to simulate the mechanical behavior in biodegradable polymers, during several steps of degradation. Hence, the convergence to an optimal solution can be obtained computationally, through material models implemented in a FEM software package, such as ABAQUS. Ideally, the device should degrade its mechanical properties compatibly with the required life cycle and according to the regeneration time of the biologic tissue. Therefore, in this work the equations commonly used to describe the diffusion of water and hydrolysis kinetics will be reviewed. Furthermore, constitutive models commonly used to predict the mechanical behavior of polymers are also reviewed. Due to the nonlinear nature of the stress vs. strain relation, the classical linear elastic model is not valid for simulation under large strains. Current designs of biodegradable devices are carried out by considering hyperelastic or elastoplastic behavior and neglect any changing on the mechanical behavior with degradation. Concomitantly to its nonlinear nature, the mechanical behavior of polymeric materials is also time dependent. The mechanical behavior of polymers, under large deformations and dynamic loading at varying strain rates, is a combination of elastoplastic behavior, typical of metals, and a viscous behavior typical of fluids. Different combinations of hyperelastic, plastic and viscous models can be used to describe their mechanical behavior. Since this mechanical behavior will evolve during degradation, recent approaches that will be reviewed in this work, enable to associate the evolution of material model parameters with the hydrolysis kinetics and therefore simulate the mechanical behavior of biodegradable structures during its hydrolytic degradation." @default.
- W1002924229 created "2016-06-24" @default.
- W1002924229 creator A5065091035 @default.
- W1002924229 creator A5072498379 @default.
- W1002924229 creator A5090934466 @default.
- W1002924229 date "2015-01-01" @default.
- W1002924229 modified "2023-09-26" @default.
- W1002924229 title "On Different Approaches to Simulate the Mechanical Behavior of Scaffolds during Degradation" @default.
- W1002924229 cites W1969426148 @default.
- W1002924229 cites W1970179354 @default.
- W1002924229 cites W1973450969 @default.
- W1002924229 cites W1977585701 @default.
- W1002924229 cites W1980799267 @default.
- W1002924229 cites W1987686940 @default.
- W1002924229 cites W1996239906 @default.
- W1002924229 cites W2007584892 @default.
- W1002924229 cites W2012733218 @default.
- W1002924229 cites W2022551247 @default.
- W1002924229 cites W2055792112 @default.
- W1002924229 cites W2063543655 @default.
- W1002924229 cites W2065507798 @default.
- W1002924229 cites W2072624182 @default.
- W1002924229 cites W2073385144 @default.
- W1002924229 cites W2083656080 @default.
- W1002924229 cites W2109314518 @default.
- W1002924229 cites W2120486607 @default.
- W1002924229 cites W2134000910 @default.
- W1002924229 cites W2137024545 @default.
- W1002924229 cites W2145826156 @default.
- W1002924229 cites W2168859422 @default.
- W1002924229 cites W40301670 @default.
- W1002924229 doi "https://doi.org/10.1016/j.proeng.2015.07.005" @default.
- W1002924229 hasPublicationYear "2015" @default.
- W1002924229 type Work @default.
- W1002924229 sameAs 1002924229 @default.
- W1002924229 citedByCount "4" @default.
- W1002924229 countsByYear W10029242292017 @default.
- W1002924229 countsByYear W10029242292019 @default.
- W1002924229 countsByYear W10029242292023 @default.
- W1002924229 crossrefType "journal-article" @default.
- W1002924229 hasAuthorship W1002924229A5065091035 @default.
- W1002924229 hasAuthorship W1002924229A5072498379 @default.
- W1002924229 hasAuthorship W1002924229A5090934466 @default.
- W1002924229 hasBestOaLocation W10029242291 @default.
- W1002924229 hasConcept C127413603 @default.
- W1002924229 hasConcept C135628077 @default.
- W1002924229 hasConcept C136229726 @default.
- W1002924229 hasConcept C146978453 @default.
- W1002924229 hasConcept C151730666 @default.
- W1002924229 hasConcept C162324750 @default.
- W1002924229 hasConcept C192562407 @default.
- W1002924229 hasConcept C2777303404 @default.
- W1002924229 hasConcept C2779343474 @default.
- W1002924229 hasConcept C2779679103 @default.
- W1002924229 hasConcept C41008148 @default.
- W1002924229 hasConcept C49892992 @default.
- W1002924229 hasConcept C50522688 @default.
- W1002924229 hasConcept C66938386 @default.
- W1002924229 hasConcept C76155785 @default.
- W1002924229 hasConcept C77088390 @default.
- W1002924229 hasConcept C78519656 @default.
- W1002924229 hasConcept C86803240 @default.
- W1002924229 hasConcept C89429830 @default.
- W1002924229 hasConcept C89714869 @default.
- W1002924229 hasConceptScore W1002924229C127413603 @default.
- W1002924229 hasConceptScore W1002924229C135628077 @default.
- W1002924229 hasConceptScore W1002924229C136229726 @default.
- W1002924229 hasConceptScore W1002924229C146978453 @default.
- W1002924229 hasConceptScore W1002924229C151730666 @default.
- W1002924229 hasConceptScore W1002924229C162324750 @default.
- W1002924229 hasConceptScore W1002924229C192562407 @default.
- W1002924229 hasConceptScore W1002924229C2777303404 @default.
- W1002924229 hasConceptScore W1002924229C2779343474 @default.
- W1002924229 hasConceptScore W1002924229C2779679103 @default.
- W1002924229 hasConceptScore W1002924229C41008148 @default.
- W1002924229 hasConceptScore W1002924229C49892992 @default.
- W1002924229 hasConceptScore W1002924229C50522688 @default.
- W1002924229 hasConceptScore W1002924229C66938386 @default.
- W1002924229 hasConceptScore W1002924229C76155785 @default.
- W1002924229 hasConceptScore W1002924229C77088390 @default.
- W1002924229 hasConceptScore W1002924229C78519656 @default.
- W1002924229 hasConceptScore W1002924229C86803240 @default.
- W1002924229 hasConceptScore W1002924229C89429830 @default.
- W1002924229 hasConceptScore W1002924229C89714869 @default.
- W1002924229 hasLocation W10029242291 @default.
- W1002924229 hasOpenAccess W1002924229 @default.
- W1002924229 hasPrimaryLocation W10029242291 @default.
- W1002924229 hasRelatedWork W2027180995 @default.
- W1002924229 hasRelatedWork W2062007833 @default.
- W1002924229 hasRelatedWork W2339491277 @default.
- W1002924229 hasRelatedWork W2351893319 @default.
- W1002924229 hasRelatedWork W2387757681 @default.
- W1002924229 hasRelatedWork W2412922490 @default.
- W1002924229 hasRelatedWork W2478420051 @default.
- W1002924229 hasRelatedWork W2626164717 @default.
- W1002924229 hasRelatedWork W2899084033 @default.
- W1002924229 hasRelatedWork W3003069570 @default.
- W1002924229 hasVolume "110" @default.