Matches in SemOpenAlex for { <https://semopenalex.org/work/W100360021> ?p ?o ?g. }
- W100360021 abstract "High-energy particle accelerators produce intense charged particle beams, e.g. of electrons or protons, at multi-GeV or multi-TeV energies, either shooting a single such beam against a fixed target or colliding two beams, in order to produce new particles and to study the scattering events in the search for the fundamental laws of physics. In the beam pipe of these accelerators an “electron cloud” can be generated by a variety of processes, e.g. by residualgas ionization, by photoemission from synchrotron radiation, and, most importantly, by secondary emission via a “beam-induced multipactoring” process [1]. The electron accumulation is most pronounced for positively charged particle beams, consisting e.g. of positrons or protons. The electron cloud causes a number of undesirable effects: It commonly leads to a degradation of the beam vacuum by several orders of magnitude [1-2], to fast beam “instabilities” [3-7], to beam size increases, as well as to fast or slow beam losses [3-8]. Since more than 40 years, electron-cloud effects of various flavors have been observed with particle beams. They have often limited the ultimate accelerator performance. The electron cloud is a concern for the new 27-km 14-TeV Large Hadron Collider (LHC), soon to start operation at the European Organization for Nuclear Research, CERN, whose accelerator complex is shown in Fig. 1. Several electroncloud effects are already being observed with LHC-type beam in the lower-energy LHC injectors, especially in the Super Proton Synchrotron (SPS) and the Proton Synchrotron (PS). At the new machine, the LHC proper, the cloud electrons can also give rise to a heat load inside the cold superconducting magnets [9-10] which, if exceeding the limited cooling capacity at cryogenic temperature, could lead to the magnets’ transition into the normal-conducting state (“quench”). In addition to the direct heat deposition from incoherently moving electrons, the possibility of a “magnetron effect” has also been conjectured, where electrons would radiate coherently when moving in a strong magnetic field under the simultaneous influence of a beam-induced electric “wake” field that might become resonant with the cyclotron frequency. In particle accelerators, there is another similar, but more violent, class of processes involving secondary electron emission and electron amplification, namely the multipactoring and breakdown phenomena which limit the accelerating gradient in normalor super-conducting radiofrequency (rf) cavities used for beam acceleration and for longitudinal focusing. These rf-induced processes can lead to a “trip” of the affected rf cavity, normally resulting in immediate beam loss. Many of the cures initially developed to combat electron multipacting and breakdown in rf cavities, like surface coating with TiN [11], fine surface grooves [12], solenoidal magnetic fields [13], injection of uncorrelated microwaves [14], or ~kV dc electric bias fields at the rf couplers [14], have also proven effective against the beam-induced electron cloud." @default.
- W100360021 created "2016-06-24" @default.
- W100360021 creator A5014809845 @default.
- W100360021 creator A5015063835 @default.
- W100360021 creator A5075400886 @default.
- W100360021 creator A5090453943 @default.
- W100360021 date "2009-01-31" @default.
- W100360021 modified "2023-09-27" @default.
- W100360021 title "Beam-Induced Multipactoring and Electron-Cloud Effects in Particle Accelerators" @default.
- W100360021 cites W1521319362 @default.
- W100360021 cites W1526150486 @default.
- W100360021 cites W1590189305 @default.
- W100360021 cites W1968133052 @default.
- W100360021 cites W1969034457 @default.
- W100360021 cites W1980702182 @default.
- W100360021 cites W1982011469 @default.
- W100360021 cites W1999761016 @default.
- W100360021 cites W2001345813 @default.
- W100360021 cites W2003441198 @default.
- W100360021 cites W2007914804 @default.
- W100360021 cites W2013652636 @default.
- W100360021 cites W2014039707 @default.
- W100360021 cites W2018469489 @default.
- W100360021 cites W2035445126 @default.
- W100360021 cites W2057581444 @default.
- W100360021 cites W2087975233 @default.
- W100360021 cites W2096148953 @default.
- W100360021 cites W2103349220 @default.
- W100360021 cites W2128313280 @default.
- W100360021 cites W2129625018 @default.
- W100360021 cites W2135165167 @default.
- W100360021 cites W2137225785 @default.
- W100360021 cites W2145824499 @default.
- W100360021 cites W2158834763 @default.
- W100360021 cites W2161550703 @default.
- W100360021 cites W2165028809 @default.
- W100360021 cites W2413044892 @default.
- W100360021 cites W273912203 @default.
- W100360021 cites W2884793855 @default.
- W100360021 cites W3125785277 @default.
- W100360021 cites W38044631 @default.
- W100360021 hasPublicationYear "2009" @default.
- W100360021 type Work @default.
- W100360021 sameAs 100360021 @default.
- W100360021 citedByCount "1" @default.
- W100360021 crossrefType "journal-article" @default.
- W100360021 hasAuthorship W100360021A5014809845 @default.
- W100360021 hasAuthorship W100360021A5015063835 @default.
- W100360021 hasAuthorship W100360021A5075400886 @default.
- W100360021 hasAuthorship W100360021A5090453943 @default.
- W100360021 hasConcept C120665830 @default.
- W100360021 hasConcept C121332964 @default.
- W100360021 hasConcept C145148216 @default.
- W100360021 hasConcept C147120987 @default.
- W100360021 hasConcept C152290109 @default.
- W100360021 hasConcept C16332341 @default.
- W100360021 hasConcept C168834538 @default.
- W100360021 hasConcept C184779094 @default.
- W100360021 hasConcept C185544564 @default.
- W100360021 hasConcept C189166818 @default.
- W100360021 hasConcept C21368211 @default.
- W100360021 hasConcept C2776691733 @default.
- W100360021 hasConcept C2778329856 @default.
- W100360021 hasConcept C35048267 @default.
- W100360021 hasConcept C54516573 @default.
- W100360021 hasConcept C62520636 @default.
- W100360021 hasConcept C87668248 @default.
- W100360021 hasConceptScore W100360021C120665830 @default.
- W100360021 hasConceptScore W100360021C121332964 @default.
- W100360021 hasConceptScore W100360021C145148216 @default.
- W100360021 hasConceptScore W100360021C147120987 @default.
- W100360021 hasConceptScore W100360021C152290109 @default.
- W100360021 hasConceptScore W100360021C16332341 @default.
- W100360021 hasConceptScore W100360021C168834538 @default.
- W100360021 hasConceptScore W100360021C184779094 @default.
- W100360021 hasConceptScore W100360021C185544564 @default.
- W100360021 hasConceptScore W100360021C189166818 @default.
- W100360021 hasConceptScore W100360021C21368211 @default.
- W100360021 hasConceptScore W100360021C2776691733 @default.
- W100360021 hasConceptScore W100360021C2778329856 @default.
- W100360021 hasConceptScore W100360021C35048267 @default.
- W100360021 hasConceptScore W100360021C54516573 @default.
- W100360021 hasConceptScore W100360021C62520636 @default.
- W100360021 hasConceptScore W100360021C87668248 @default.
- W100360021 hasLocation W1003600211 @default.
- W100360021 hasOpenAccess W100360021 @default.
- W100360021 hasPrimaryLocation W1003600211 @default.
- W100360021 hasRelatedWork W2012756299 @default.
- W100360021 hasRelatedWork W2021974071 @default.
- W100360021 hasRelatedWork W2031823054 @default.
- W100360021 hasRelatedWork W2047200001 @default.
- W100360021 hasRelatedWork W2061664772 @default.
- W100360021 hasRelatedWork W2075586881 @default.
- W100360021 hasRelatedWork W2097748381 @default.
- W100360021 hasRelatedWork W2098085365 @default.
- W100360021 hasRelatedWork W2124601314 @default.
- W100360021 hasRelatedWork W2126183524 @default.
- W100360021 hasRelatedWork W2150060317 @default.
- W100360021 hasRelatedWork W2166489876 @default.
- W100360021 hasRelatedWork W2294750475 @default.