Matches in SemOpenAlex for { <https://semopenalex.org/work/W100383527> ?p ?o ?g. }
- W100383527 abstract "The study of modal logic often starts with that of unary operators applied to sentences, denoting some notions of necessity or possibility. However, we adopt a more general approach in this dissertation. We begin with object languages that possess multi-ary modal operators, and interpret them in relational semantics, neighbourhood semantics and algebraic semantics. Some topics on this subject have been investigated by logicians for some time, and we present a survey of their results. But there remain areas to be explored, and we examine them in order to gain more knowledge of our territory. More specifically, we propose polyadic modal axioms that correspond to seriality, reflexivity, symmetry, transitivity and euclideanness of multi-ary relations, and prove soundness and completeness of normal systems based on these axioms. We also put forward polyadic classical systems determined by classes of neighbourhood frames of finite types such as superset-closed frames, quasifiltroids and filtroids. Equivalences between categories of modal algebras and categories of relational frames and neighbourhood frames are demonstrated. Furthermore some of the systems studied in this dissertation are shown to be translationally equivalent. While the first part of our study is purely formal, we take a different route in the second part. The multi-ary modal operators, previously interpreted in classes of mathematical structures, are given meanings in ordinary discourse. We read them as modalities in normative thinking, for instance, as the “ought” when we say “you ought to visit your parents, or at least call them if you cannot visit them”. A series of polyadic modal logics, called systems of deontic residuation, are proposed. They represent real-life situations involving, for example, normative conflicts and contrary-to-duty obligations better than traditional deontic logics based on unary modal operators do." @default.
- W100383527 created "2016-06-24" @default.
- W100383527 creator A5006384590 @default.
- W100383527 date "2008-01-01" @default.
- W100383527 modified "2023-09-24" @default.
- W100383527 title "Polyadic modal logics with applications in normative reasoning" @default.
- W100383527 cites W1120761376 @default.
- W100383527 cites W120134406 @default.
- W100383527 cites W1497783876 @default.
- W100383527 cites W1500679563 @default.
- W100383527 cites W150305430 @default.
- W100383527 cites W1505296242 @default.
- W100383527 cites W1511215329 @default.
- W100383527 cites W1527588453 @default.
- W100383527 cites W1529922896 @default.
- W100383527 cites W1534787852 @default.
- W100383527 cites W1534873969 @default.
- W100383527 cites W1545955554 @default.
- W100383527 cites W1568454198 @default.
- W100383527 cites W1574675058 @default.
- W100383527 cites W1580776589 @default.
- W100383527 cites W1591728283 @default.
- W100383527 cites W1596067335 @default.
- W100383527 cites W1651570284 @default.
- W100383527 cites W1759871617 @default.
- W100383527 cites W1809048060 @default.
- W100383527 cites W1849885691 @default.
- W100383527 cites W1870419269 @default.
- W100383527 cites W1881301291 @default.
- W100383527 cites W1887821159 @default.
- W100383527 cites W1965324703 @default.
- W100383527 cites W1967192042 @default.
- W100383527 cites W1968372691 @default.
- W100383527 cites W1969992192 @default.
- W100383527 cites W1974369637 @default.
- W100383527 cites W1987760095 @default.
- W100383527 cites W1988877071 @default.
- W100383527 cites W1991748341 @default.
- W100383527 cites W1992205482 @default.
- W100383527 cites W1994367393 @default.
- W100383527 cites W2001917952 @default.
- W100383527 cites W2003782541 @default.
- W100383527 cites W2006578955 @default.
- W100383527 cites W2008443647 @default.
- W100383527 cites W2010242502 @default.
- W100383527 cites W2010716453 @default.
- W100383527 cites W2016806726 @default.
- W100383527 cites W2017096836 @default.
- W100383527 cites W2017542140 @default.
- W100383527 cites W2021916230 @default.
- W100383527 cites W2032330559 @default.
- W100383527 cites W2035165282 @default.
- W100383527 cites W2038216920 @default.
- W100383527 cites W2046750700 @default.
- W100383527 cites W2046753842 @default.
- W100383527 cites W2056702263 @default.
- W100383527 cites W2057502281 @default.
- W100383527 cites W2075277371 @default.
- W100383527 cites W2078695050 @default.
- W100383527 cites W2079600887 @default.
- W100383527 cites W2082884384 @default.
- W100383527 cites W2083784243 @default.
- W100383527 cites W2097888063 @default.
- W100383527 cites W2106630772 @default.
- W100383527 cites W2108801036 @default.
- W100383527 cites W2112687509 @default.
- W100383527 cites W2113841480 @default.
- W100383527 cites W2116233866 @default.
- W100383527 cites W2120713972 @default.
- W100383527 cites W2142596250 @default.
- W100383527 cites W2143620943 @default.
- W100383527 cites W2151163617 @default.
- W100383527 cites W2155581733 @default.
- W100383527 cites W2158942091 @default.
- W100383527 cites W2163751633 @default.
- W100383527 cites W2166325725 @default.
- W100383527 cites W2168169495 @default.
- W100383527 cites W2223528451 @default.
- W100383527 cites W2232448774 @default.
- W100383527 cites W2315064349 @default.
- W100383527 cites W2488380345 @default.
- W100383527 cites W2497974723 @default.
- W100383527 cites W2610670723 @default.
- W100383527 cites W2794585940 @default.
- W100383527 cites W2970205057 @default.
- W100383527 cites W593005562 @default.
- W100383527 cites W596709160 @default.
- W100383527 cites W618489985 @default.
- W100383527 cites W632134755 @default.
- W100383527 cites W2567068011 @default.
- W100383527 cites W2797009359 @default.
- W100383527 hasPublicationYear "2008" @default.
- W100383527 type Work @default.
- W100383527 sameAs 100383527 @default.
- W100383527 citedByCount "0" @default.
- W100383527 crossrefType "dissertation" @default.
- W100383527 hasAuthorship W100383527A5006384590 @default.
- W100383527 hasConcept C11191006 @default.
- W100383527 hasConcept C114092440 @default.
- W100383527 hasConcept C114614502 @default.