Matches in SemOpenAlex for { <https://semopenalex.org/work/W1004047380> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W1004047380 abstract "Megmutattuk, hogy szamos, az irodalomban megjelent kvazilokalis energiakifejezes a fizikai elvarasokkal ellentetes eredmenyt (pl. Minkowski teridőben is szigoruan pozitiv vagy negativ gravitacios energiat) ad. Meghataroztuk a kanonikus valtozokra vonatkozo azon peremfelteteleket, amelyek biztositjak a kenyszerek es az alap Hamilton fuggvenyek Poisson algebrava zarodasat es a megfigyelhető mennyisegek gauge-invarianciajat. Bebizonyitottuk, hogy az Einstein elmelet tetradformalizmusaban a kvazilokalis mennyisegek bevezethetősegenek nincsenek topologikus obstrukcioi. Megmutattuk, hogy a terszeru vegtelenben aszimptitikusan sik teridőkben a tomegkozeppont kifejezesunk a terbeli impulzusmomentummal olyan megmarado negyestenzort alkot, ami a korrekt modon transzformalodik a gravitacios fazisterben is. A fenyszerű vegtelenben olyan gauge invarians implzusmomentum kifejezest talaltunk, melynek a segitsegevel a lokalizalt forrasbol a gravitacios sugarzas altal elvitt impulzusmomentum szamolhato. Bizonyitottuk t'Hooft holografikus hipotezisenek egy klasszikus, altalanos relativisztikus alakjat kompakt felegyszerű mertekcsoportu Yang-Mills es Higgs terekre es a Minkowski ter gravitacios perturbacioira. Megmutattuk, hogy a csatolt Einstein-Yang-Mills-Higgs rendszer időfejlődeset generalo hamiltoni kenyszere egyszerű Poisson zarojele a 3 dimenzios ter terfogatanak es egy, a fazisteren ertelmezett dimenziotlan fuggvenynek. | We showed that several quasi-local energy expressions yield results that contradict the physical expectations, e.g. strictly positive or negative gravitational energy even in Minkowski spacetime. We determined the boundary conditions for the canonical variables that ensure that the constraints and the basic Hamiltonians close to a Poisson algebra, and the gauge invariance of the resulting observables. We showed that there are no global topological obstructions to the introduction of the quasi-local quantities in the tetrad formalism of Einstein's theory. We showed that in asymptotically flat spacetimes our centre-of-mass expression together with the spatial angular momentum form a conserved Lorentzian angular momentum that has the correct transformation properties in the gravitational phase space, too. We gave a gauge invariant expression for the angular momentum at the null infinity, by means of which the angular momentum carried away by the gravitational radiation from the localized source can be calculated. We proved a classical, general relativistic form of t'Hooft's holographic hypothesis for the Yang-Mills and Higgs fields with compact, semisimple gauge groups and for the gravitational perturbations of the Minkowski spacetime. We showed that the Hamiltonian constraint, generating the dynamics of the coupled Einstein-Yang-Mills-Higgs system, is a pure Poisson bracket of the volume of the 3-space and a dimensionless function on the phase space." @default.
- W1004047380 created "2016-06-24" @default.
- W1004047380 creator A5044554276 @default.
- W1004047380 date "2008-01-01" @default.
- W1004047380 modified "2023-09-23" @default.
- W1004047380 title "Kvázilokális megfigyelhető mennyiségek és az általános relativitáselmélet kanonikus szerkezete = Quasi-local observables and the canonical structure of General Relativity" @default.
- W1004047380 hasPublicationYear "2008" @default.
- W1004047380 type Work @default.
- W1004047380 sameAs 1004047380 @default.
- W1004047380 citedByCount "0" @default.
- W1004047380 crossrefType "journal-article" @default.
- W1004047380 hasAuthorship W1004047380A5044554276 @default.
- W1004047380 hasConcept C121332964 @default.
- W1004047380 hasConcept C146846114 @default.
- W1004047380 hasConcept C147452769 @default.
- W1004047380 hasConcept C32848918 @default.
- W1004047380 hasConcept C37914503 @default.
- W1004047380 hasConcept C62520636 @default.
- W1004047380 hasConcept C79464548 @default.
- W1004047380 hasConceptScore W1004047380C121332964 @default.
- W1004047380 hasConceptScore W1004047380C146846114 @default.
- W1004047380 hasConceptScore W1004047380C147452769 @default.
- W1004047380 hasConceptScore W1004047380C32848918 @default.
- W1004047380 hasConceptScore W1004047380C37914503 @default.
- W1004047380 hasConceptScore W1004047380C62520636 @default.
- W1004047380 hasConceptScore W1004047380C79464548 @default.
- W1004047380 hasLocation W10040473801 @default.
- W1004047380 hasOpenAccess W1004047380 @default.
- W1004047380 hasPrimaryLocation W10040473801 @default.
- W1004047380 hasRelatedWork W1251306365 @default.
- W1004047380 hasRelatedWork W1992432198 @default.
- W1004047380 hasRelatedWork W1994672275 @default.
- W1004047380 hasRelatedWork W2019176086 @default.
- W1004047380 hasRelatedWork W2027563096 @default.
- W1004047380 hasRelatedWork W2058890203 @default.
- W1004047380 hasRelatedWork W2133752817 @default.
- W1004047380 hasRelatedWork W2149626171 @default.
- W1004047380 hasRelatedWork W2152516539 @default.
- W1004047380 hasRelatedWork W2181992346 @default.
- W1004047380 hasRelatedWork W2281674718 @default.
- W1004047380 hasRelatedWork W2504677041 @default.
- W1004047380 hasRelatedWork W3100696116 @default.
- W1004047380 hasRelatedWork W3102884958 @default.
- W1004047380 hasRelatedWork W3105370798 @default.
- W1004047380 hasRelatedWork W3118761376 @default.
- W1004047380 hasRelatedWork W3122422538 @default.
- W1004047380 hasRelatedWork W3123960809 @default.
- W1004047380 hasRelatedWork W3124912284 @default.
- W1004047380 hasRelatedWork W2476257905 @default.
- W1004047380 isParatext "false" @default.
- W1004047380 isRetracted "false" @default.
- W1004047380 magId "1004047380" @default.
- W1004047380 workType "article" @default.