Matches in SemOpenAlex for { <https://semopenalex.org/work/W1004089168> ?p ?o ?g. }
- W1004089168 endingPage "2705" @default.
- W1004089168 startingPage "2693" @default.
- W1004089168 abstract "One of the main animal health problems in tropical and subtropical cattle production is the bovine tick, which causes decreased performance, hide devaluation, increased production costs with acaricide treatments, and transmission of infectious diseases. This study investigated the utility of genomic prediction as a tool to select Braford (BO) and Hereford (HH) cattle resistant to ticks. The accuracy and bias of different methods for direct and blended genomic prediction was assessed using 10,673 tick counts obtained from 3,435 BO and 928 HH cattle belonging to the Delta G Connection breeding program. A subset of 2,803 BO and 652 HH samples were genotyped and 41,045 markers remained after quality control. Log transformed records were adjusted by a pedigree repeatability model to estimate variance components, genetic parameters, and breeding values (EBV) and subsequently used to obtain deregressed EBV. Estimated heritability and repeatability for tick counts were 0.19 ± 0.03 and 0.29 ± 0.01, respectively. Data were split into 5 subsets using k-means and random clustering for cross-validation of genomic predictions. Depending on the method, direct genomic value (DGV) prediction accuracies ranged from 0.35 with Bayes least absolute shrinkage and selection operator (LASSO) to 0.39 with BayesB for k-means clustering and between 0.42 with BayesLASSO and 0.45 with BayesC for random clustering. All genomic methods were superior to pedigree BLUP (PBLUP) accuracies of 0.26 for k-means and 0.29 for random groups, with highest accuracy gains obtained with BayesB (39%) for k-means and BayesC (55%) for random groups. Blending of historical phenotypic and pedigree information by different methods further increased DGV accuracies by values between 0.03 and 0.05 for direct prediction methods. However, highest accuracy was observed with single-step genomic BLUP with values of 0.48 for -means and 0.56, which represent, respectively, 84 and 93% improvement over PBLUP. Observed random clustering cross-validation breed-specific accuracies ranged between 0.29 and 0.36 for HH and between 0.55 and 0.61 for BO, depending on the blending method. These moderately high values for BO demonstrate that genomic predictions could be used as a practical tool to improve genetic resistance to ticks and in the development of resistant lines of this breed. For HH, accuracies are still in the low to moderate side and this breed training population needs to be increased before genomic selection could be reliably applied to improve tick resistance." @default.
- W1004089168 created "2016-06-24" @default.
- W1004089168 creator A5004727061 @default.
- W1004089168 creator A5004939788 @default.
- W1004089168 creator A5019143326 @default.
- W1004089168 creator A5038977341 @default.
- W1004089168 creator A5042321230 @default.
- W1004089168 creator A5062523270 @default.
- W1004089168 creator A5063601848 @default.
- W1004089168 creator A5074113636 @default.
- W1004089168 creator A5085769702 @default.
- W1004089168 creator A5086267943 @default.
- W1004089168 date "2015-06-01" @default.
- W1004089168 modified "2023-10-14" @default.
- W1004089168 title "Genomic prediction for tick resistance in Braford and Hereford cattle1" @default.
- W1004089168 cites W1498457752 @default.
- W1004089168 cites W1519214761 @default.
- W1004089168 cites W1928998639 @default.
- W1004089168 cites W1936339716 @default.
- W1004089168 cites W1974472608 @default.
- W1004089168 cites W1975977333 @default.
- W1004089168 cites W1982652137 @default.
- W1004089168 cites W1986084863 @default.
- W1004089168 cites W1993102294 @default.
- W1004089168 cites W1995797925 @default.
- W1004089168 cites W2021001301 @default.
- W1004089168 cites W2022570681 @default.
- W1004089168 cites W2022688527 @default.
- W1004089168 cites W2023673366 @default.
- W1004089168 cites W2032642937 @default.
- W1004089168 cites W2034846276 @default.
- W1004089168 cites W2036156662 @default.
- W1004089168 cites W2038896888 @default.
- W1004089168 cites W2041000916 @default.
- W1004089168 cites W2062841290 @default.
- W1004089168 cites W2067715889 @default.
- W1004089168 cites W2076689194 @default.
- W1004089168 cites W2085425907 @default.
- W1004089168 cites W2089590084 @default.
- W1004089168 cites W2094846305 @default.
- W1004089168 cites W2102087753 @default.
- W1004089168 cites W2102811409 @default.
- W1004089168 cites W2103390433 @default.
- W1004089168 cites W2109781146 @default.
- W1004089168 cites W2110748541 @default.
- W1004089168 cites W2110787179 @default.
- W1004089168 cites W2110974472 @default.
- W1004089168 cites W2119015447 @default.
- W1004089168 cites W2130434665 @default.
- W1004089168 cites W2141255466 @default.
- W1004089168 cites W2142220815 @default.
- W1004089168 cites W2149385055 @default.
- W1004089168 cites W2157424635 @default.
- W1004089168 cites W2160607966 @default.
- W1004089168 cites W2164050502 @default.
- W1004089168 cites W2168329225 @default.
- W1004089168 cites W2170554520 @default.
- W1004089168 cites W390837931 @default.
- W1004089168 doi "https://doi.org/10.2527/jas.2014-8832" @default.
- W1004089168 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26115257" @default.
- W1004089168 hasPublicationYear "2015" @default.
- W1004089168 type Work @default.
- W1004089168 sameAs 1004089168 @default.
- W1004089168 citedByCount "45" @default.
- W1004089168 countsByYear W10040891682015 @default.
- W1004089168 countsByYear W10040891682016 @default.
- W1004089168 countsByYear W10040891682017 @default.
- W1004089168 countsByYear W10040891682018 @default.
- W1004089168 countsByYear W10040891682019 @default.
- W1004089168 countsByYear W10040891682020 @default.
- W1004089168 countsByYear W10040891682021 @default.
- W1004089168 countsByYear W10040891682022 @default.
- W1004089168 countsByYear W10040891682023 @default.
- W1004089168 crossrefType "journal-article" @default.
- W1004089168 hasAuthorship W1004089168A5004727061 @default.
- W1004089168 hasAuthorship W1004089168A5004939788 @default.
- W1004089168 hasAuthorship W1004089168A5019143326 @default.
- W1004089168 hasAuthorship W1004089168A5038977341 @default.
- W1004089168 hasAuthorship W1004089168A5042321230 @default.
- W1004089168 hasAuthorship W1004089168A5062523270 @default.
- W1004089168 hasAuthorship W1004089168A5063601848 @default.
- W1004089168 hasAuthorship W1004089168A5074113636 @default.
- W1004089168 hasAuthorship W1004089168A5085769702 @default.
- W1004089168 hasAuthorship W1004089168A5086267943 @default.
- W1004089168 hasConcept C104317684 @default.
- W1004089168 hasConcept C105795698 @default.
- W1004089168 hasConcept C135763542 @default.
- W1004089168 hasConcept C140793950 @default.
- W1004089168 hasConcept C150903083 @default.
- W1004089168 hasConcept C153209595 @default.
- W1004089168 hasConcept C154020017 @default.
- W1004089168 hasConcept C161890455 @default.
- W1004089168 hasConcept C2780505807 @default.
- W1004089168 hasConcept C2992444039 @default.
- W1004089168 hasConcept C33923547 @default.
- W1004089168 hasConcept C42972112 @default.
- W1004089168 hasConcept C54355233 @default.
- W1004089168 hasConcept C71924100 @default.