Matches in SemOpenAlex for { <https://semopenalex.org/work/W1006446162> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W1006446162 abstract "Purpose: Transrectal ultrasound (TRUS) is the standard imaging modality for the image-guided prostate-cancer interventions (e.g., biopsy and brachytherapy) due to its versatility and real-time capability. Accurate segmentation of the prostate plays a key role in biopsy needle placement, treatment planning, and motion monitoring. As ultrasound images have a relatively low signal-to-noise ratio (SNR), automatic segmentation of the prostate is difficult. However, manual segmentation during biopsy or radiation therapy can be time consuming. We are developing an automated method to address this technical challenge. Methods: The proposed segmentation method consists of two major stages: the training stage and the segmentation stage. During the training stage, patch-based anatomical features are extracted from the registered training images with patient-specific information, because these training images have been mapped to the new patient’ images, and the more informative anatomical features are selected to train the kernel support vector machine (KSVM). During the segmentation stage, the selected anatomical features are extracted from newly acquired image as the input of the well-trained KSVM and the output of this trained KSVM is the segmented prostate of this patient. Results: This segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentation. The mean volume Dice Overlap Coefficient was 89.7±2.3%, and the average surface distance was 1.52 ± 0.57 mm between our and manual segmentation, which indicate that the automatic segmentation method works well and could be used for 3D ultrasound-guided prostate intervention. Conclusion: We have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentation (gold standard). This segmentation technique could be a useful tool for image-guided interventions in prostate-cancer diagnosis and treatment. This research is supported in part by DOD PCRP Award W81XWH-13-1-0269, and National Cancer Institute (NCI) Grant CA114313." @default.
- W1006446162 created "2016-06-24" @default.
- W1006446162 creator A5008405410 @default.
- W1006446162 creator A5009731683 @default.
- W1006446162 creator A5016133474 @default.
- W1006446162 creator A5026088869 @default.
- W1006446162 creator A5055685102 @default.
- W1006446162 creator A5081519486 @default.
- W1006446162 date "2015-06-01" @default.
- W1006446162 modified "2023-10-13" @default.
- W1006446162 title "WE-EF-210-08: BEST IN PHYSICS (IMAGING): 3D Prostate Segmentation in Ultrasound Images Using Patch-Based Anatomical Feature" @default.
- W1006446162 doi "https://doi.org/10.1118/1.4926032" @default.
- W1006446162 hasPublicationYear "2015" @default.
- W1006446162 type Work @default.
- W1006446162 sameAs 1006446162 @default.
- W1006446162 citedByCount "7" @default.
- W1006446162 countsByYear W10064461622016 @default.
- W1006446162 countsByYear W10064461622019 @default.
- W1006446162 crossrefType "journal-article" @default.
- W1006446162 hasAuthorship W1006446162A5008405410 @default.
- W1006446162 hasAuthorship W1006446162A5009731683 @default.
- W1006446162 hasAuthorship W1006446162A5016133474 @default.
- W1006446162 hasAuthorship W1006446162A5026088869 @default.
- W1006446162 hasAuthorship W1006446162A5055685102 @default.
- W1006446162 hasAuthorship W1006446162A5081519486 @default.
- W1006446162 hasConcept C121608353 @default.
- W1006446162 hasConcept C124504099 @default.
- W1006446162 hasConcept C126322002 @default.
- W1006446162 hasConcept C126838900 @default.
- W1006446162 hasConcept C138885662 @default.
- W1006446162 hasConcept C143753070 @default.
- W1006446162 hasConcept C153180895 @default.
- W1006446162 hasConcept C154945302 @default.
- W1006446162 hasConcept C163892561 @default.
- W1006446162 hasConcept C2776401178 @default.
- W1006446162 hasConcept C2780170424 @default.
- W1006446162 hasConcept C2780192828 @default.
- W1006446162 hasConcept C2781217009 @default.
- W1006446162 hasConcept C31972630 @default.
- W1006446162 hasConcept C41008148 @default.
- W1006446162 hasConcept C41895202 @default.
- W1006446162 hasConcept C71924100 @default.
- W1006446162 hasConcept C89600930 @default.
- W1006446162 hasConceptScore W1006446162C121608353 @default.
- W1006446162 hasConceptScore W1006446162C124504099 @default.
- W1006446162 hasConceptScore W1006446162C126322002 @default.
- W1006446162 hasConceptScore W1006446162C126838900 @default.
- W1006446162 hasConceptScore W1006446162C138885662 @default.
- W1006446162 hasConceptScore W1006446162C143753070 @default.
- W1006446162 hasConceptScore W1006446162C153180895 @default.
- W1006446162 hasConceptScore W1006446162C154945302 @default.
- W1006446162 hasConceptScore W1006446162C163892561 @default.
- W1006446162 hasConceptScore W1006446162C2776401178 @default.
- W1006446162 hasConceptScore W1006446162C2780170424 @default.
- W1006446162 hasConceptScore W1006446162C2780192828 @default.
- W1006446162 hasConceptScore W1006446162C2781217009 @default.
- W1006446162 hasConceptScore W1006446162C31972630 @default.
- W1006446162 hasConceptScore W1006446162C41008148 @default.
- W1006446162 hasConceptScore W1006446162C41895202 @default.
- W1006446162 hasConceptScore W1006446162C71924100 @default.
- W1006446162 hasConceptScore W1006446162C89600930 @default.
- W1006446162 hasLocation W10064461621 @default.
- W1006446162 hasOpenAccess W1006446162 @default.
- W1006446162 hasPrimaryLocation W10064461621 @default.
- W1006446162 hasRelatedWork W1501798870 @default.
- W1006446162 hasRelatedWork W2016302913 @default.
- W1006446162 hasRelatedWork W2019209953 @default.
- W1006446162 hasRelatedWork W2020591314 @default.
- W1006446162 hasRelatedWork W2020958093 @default.
- W1006446162 hasRelatedWork W2038819887 @default.
- W1006446162 hasRelatedWork W2054593423 @default.
- W1006446162 hasRelatedWork W2069637751 @default.
- W1006446162 hasRelatedWork W2288365139 @default.
- W1006446162 hasRelatedWork W2474539459 @default.
- W1006446162 hasRelatedWork W2750855567 @default.
- W1006446162 hasRelatedWork W2764668828 @default.
- W1006446162 hasRelatedWork W2794350160 @default.
- W1006446162 hasRelatedWork W2795126069 @default.
- W1006446162 hasRelatedWork W2910702843 @default.
- W1006446162 hasRelatedWork W2924805093 @default.
- W1006446162 hasRelatedWork W2940937804 @default.
- W1006446162 hasRelatedWork W3021454079 @default.
- W1006446162 hasRelatedWork W3112600384 @default.
- W1006446162 hasRelatedWork W3131517655 @default.
- W1006446162 isParatext "false" @default.
- W1006446162 isRetracted "false" @default.
- W1006446162 magId "1006446162" @default.
- W1006446162 workType "article" @default.