Matches in SemOpenAlex for { <https://semopenalex.org/work/W100695655> ?p ?o ?g. }
- W100695655 endingPage "391" @default.
- W100695655 startingPage "383" @default.
- W100695655 abstract "Many models for sparse regression typically assume that the covariates are known completely, and without noise. Particularly in high-dimensional applications, this is often not the case. Worse yet, even estimating statistics of the noise (the noise covariance) can be a central challenge. In this paper we develop a simple variant of orthogonal matching pursuit (OMP) for precisely this setting. We show that without knowledge of the noise covariance, our algorithm recovers the support, and we provide matching lower bounds that show that our algorithm performs at the minimax optimal rate. While simple, this is the first algorithm that (provably) recovers support in a noise-distribution-oblivious manner. When knowledge of the noise-covariance is available, our algorithm matches the best-known l2-recovery bounds available. We show that these too are min-max optimal. Along the way, we also obtain improved performance guarantees for OMP for the standard sparse regression problem with Gaussian noise." @default.
- W100695655 created "2016-06-24" @default.
- W100695655 creator A5053978837 @default.
- W100695655 creator A5060774236 @default.
- W100695655 date "2013-06-16" @default.
- W100695655 modified "2023-09-29" @default.
- W100695655 title "Noisy and Missing Data Regression: Distribution-Oblivious Support Recovery" @default.
- W100695655 cites W1508062313 @default.
- W100695655 cites W1524622012 @default.
- W100695655 cites W1538452572 @default.
- W100695655 cites W2026523206 @default.
- W100695655 cites W2077870633 @default.
- W100695655 cites W2097323375 @default.
- W100695655 cites W2099210013 @default.
- W100695655 cites W2108034412 @default.
- W100695655 cites W2116148865 @default.
- W100695655 cites W2127271355 @default.
- W100695655 cites W2134474909 @default.
- W100695655 cites W2140856955 @default.
- W100695655 cites W2157736190 @default.
- W100695655 cites W2159700154 @default.
- W100695655 cites W2168893847 @default.
- W100695655 cites W2496316373 @default.
- W100695655 cites W2950618930 @default.
- W100695655 hasPublicationYear "2013" @default.
- W100695655 type Work @default.
- W100695655 sameAs 100695655 @default.
- W100695655 citedByCount "28" @default.
- W100695655 countsByYear W1006956552013 @default.
- W100695655 countsByYear W1006956552014 @default.
- W100695655 countsByYear W1006956552015 @default.
- W100695655 countsByYear W1006956552016 @default.
- W100695655 countsByYear W1006956552017 @default.
- W100695655 countsByYear W1006956552018 @default.
- W100695655 countsByYear W1006956552019 @default.
- W100695655 countsByYear W1006956552020 @default.
- W100695655 crossrefType "proceedings-article" @default.
- W100695655 hasAuthorship W100695655A5053978837 @default.
- W100695655 hasAuthorship W100695655A5060774236 @default.
- W100695655 hasConcept C105795698 @default.
- W100695655 hasConcept C11413529 @default.
- W100695655 hasConcept C115961682 @default.
- W100695655 hasConcept C121332964 @default.
- W100695655 hasConcept C124851039 @default.
- W100695655 hasConcept C126255220 @default.
- W100695655 hasConcept C149728462 @default.
- W100695655 hasConcept C153180895 @default.
- W100695655 hasConcept C154945302 @default.
- W100695655 hasConcept C156872377 @default.
- W100695655 hasConcept C163294075 @default.
- W100695655 hasConcept C163716315 @default.
- W100695655 hasConcept C165064840 @default.
- W100695655 hasConcept C178650346 @default.
- W100695655 hasConcept C180877172 @default.
- W100695655 hasConcept C185142706 @default.
- W100695655 hasConcept C29265498 @default.
- W100695655 hasConcept C33923547 @default.
- W100695655 hasConcept C41008148 @default.
- W100695655 hasConcept C4199805 @default.
- W100695655 hasConcept C62520636 @default.
- W100695655 hasConcept C99498987 @default.
- W100695655 hasConceptScore W100695655C105795698 @default.
- W100695655 hasConceptScore W100695655C11413529 @default.
- W100695655 hasConceptScore W100695655C115961682 @default.
- W100695655 hasConceptScore W100695655C121332964 @default.
- W100695655 hasConceptScore W100695655C124851039 @default.
- W100695655 hasConceptScore W100695655C126255220 @default.
- W100695655 hasConceptScore W100695655C149728462 @default.
- W100695655 hasConceptScore W100695655C153180895 @default.
- W100695655 hasConceptScore W100695655C154945302 @default.
- W100695655 hasConceptScore W100695655C156872377 @default.
- W100695655 hasConceptScore W100695655C163294075 @default.
- W100695655 hasConceptScore W100695655C163716315 @default.
- W100695655 hasConceptScore W100695655C165064840 @default.
- W100695655 hasConceptScore W100695655C178650346 @default.
- W100695655 hasConceptScore W100695655C180877172 @default.
- W100695655 hasConceptScore W100695655C185142706 @default.
- W100695655 hasConceptScore W100695655C29265498 @default.
- W100695655 hasConceptScore W100695655C33923547 @default.
- W100695655 hasConceptScore W100695655C41008148 @default.
- W100695655 hasConceptScore W100695655C4199805 @default.
- W100695655 hasConceptScore W100695655C62520636 @default.
- W100695655 hasConceptScore W100695655C99498987 @default.
- W100695655 hasLocation W1006956551 @default.
- W100695655 hasOpenAccess W100695655 @default.
- W100695655 hasPrimaryLocation W1006956551 @default.
- W100695655 hasRelatedWork W1504213575 @default.
- W100695655 hasRelatedWork W1508062313 @default.
- W100695655 hasRelatedWork W1758352966 @default.
- W100695655 hasRelatedWork W1986931325 @default.
- W100695655 hasRelatedWork W1993693225 @default.
- W100695655 hasRelatedWork W2092199153 @default.
- W100695655 hasRelatedWork W2099210013 @default.
- W100695655 hasRelatedWork W2116581043 @default.
- W100695655 hasRelatedWork W2127300249 @default.
- W100695655 hasRelatedWork W2135046866 @default.
- W100695655 hasRelatedWork W2141556672 @default.
- W100695655 hasRelatedWork W2150940164 @default.