Matches in SemOpenAlex for { <https://semopenalex.org/work/W1008959864> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1008959864 endingPage "345" @default.
- W1008959864 startingPage "332" @default.
- W1008959864 abstract "We extend the application of histograms to tensor analysis problem.We propose the first approach for multi-aspect-streaming tensor analysis (MASTA).MASTA is space-efficient, fast and constant-time for update.We evaluate the strengths and weaknesses of MASTA on 11 real-life data sets.The proposed approach is useful for both streaming and scalable problems. Tensor analysis is a powerful tool for multiway problems in data mining, signal processing, pattern recognition and many other areas. Nowadays, the most important challenges in tensor analysis are efficiency and adaptability. Still, the majority of techniques are not scalable or not applicable in streaming settings. One of the promising frameworks that simultaneously addresses these two issues is Incremental Tensor Analysis (ITA) that includes three variants called Dynamic Tensor Analysis (DTA), Streaming Tensor Analysis (STA) and Window-based Tensor Analysis (WTA). However, ITA restricts the tensor's growth only in time, which is a huge constraint in scalability and adaptability of other modes. We propose a new approach called multi-aspect-streaming tensor analysis (MASTA) that relaxes this constraint and allows the tensor to concurrently evolve through all modes. The new approach, which is developed for analysis-only purposes, instead of relying on expensive linear algebra techniques is founded on the histogram approximation concept. This consequently brought simplicity, adaptability, efficiency and flexibility to the tensor analysis task. The empirical evaluation on various data sets from several domains reveals that MASTA is a potential technique with a competitive value against ITA algorithms." @default.
- W1008959864 created "2016-06-24" @default.
- W1008959864 creator A5055082434 @default.
- W1008959864 creator A5076893204 @default.
- W1008959864 date "2015-11-01" @default.
- W1008959864 modified "2023-09-23" @default.
- W1008959864 title "Multi-aspect-streaming tensor analysis" @default.
- W1008959864 cites W1814521481 @default.
- W1008959864 cites W1963826206 @default.
- W1008959864 cites W1981535808 @default.
- W1008959864 cites W1981671671 @default.
- W1008959864 cites W1982572872 @default.
- W1008959864 cites W1994219736 @default.
- W1008959864 cites W2000454689 @default.
- W1008959864 cites W2004110412 @default.
- W1008959864 cites W2024165284 @default.
- W1008959864 cites W2030143591 @default.
- W1008959864 cites W2042901969 @default.
- W1008959864 cites W2049103316 @default.
- W1008959864 cites W2057058417 @default.
- W1008959864 cites W2073657741 @default.
- W1008959864 cites W2079461512 @default.
- W1008959864 cites W2103392911 @default.
- W1008959864 cites W2122646361 @default.
- W1008959864 cites W2130660124 @default.
- W1008959864 cites W2139895170 @default.
- W1008959864 cites W2143668817 @default.
- W1008959864 cites W2151310484 @default.
- W1008959864 cites W2152701363 @default.
- W1008959864 cites W2158713176 @default.
- W1008959864 cites W2163756472 @default.
- W1008959864 cites W2173213060 @default.
- W1008959864 cites W2519745146 @default.
- W1008959864 doi "https://doi.org/10.1016/j.knosys.2015.07.013" @default.
- W1008959864 hasPublicationYear "2015" @default.
- W1008959864 type Work @default.
- W1008959864 sameAs 1008959864 @default.
- W1008959864 citedByCount "18" @default.
- W1008959864 countsByYear W10089598642016 @default.
- W1008959864 countsByYear W10089598642017 @default.
- W1008959864 countsByYear W10089598642018 @default.
- W1008959864 countsByYear W10089598642019 @default.
- W1008959864 countsByYear W10089598642021 @default.
- W1008959864 countsByYear W10089598642022 @default.
- W1008959864 crossrefType "journal-article" @default.
- W1008959864 hasAuthorship W1008959864A5055082434 @default.
- W1008959864 hasAuthorship W1008959864A5076893204 @default.
- W1008959864 hasBestOaLocation W10089598642 @default.
- W1008959864 hasConcept C155281189 @default.
- W1008959864 hasConcept C171250308 @default.
- W1008959864 hasConcept C192562407 @default.
- W1008959864 hasConcept C2524010 @default.
- W1008959864 hasConcept C27703432 @default.
- W1008959864 hasConcept C30311675 @default.
- W1008959864 hasConcept C33923547 @default.
- W1008959864 hasConcept C41008148 @default.
- W1008959864 hasConceptScore W1008959864C155281189 @default.
- W1008959864 hasConceptScore W1008959864C171250308 @default.
- W1008959864 hasConceptScore W1008959864C192562407 @default.
- W1008959864 hasConceptScore W1008959864C2524010 @default.
- W1008959864 hasConceptScore W1008959864C27703432 @default.
- W1008959864 hasConceptScore W1008959864C30311675 @default.
- W1008959864 hasConceptScore W1008959864C33923547 @default.
- W1008959864 hasConceptScore W1008959864C41008148 @default.
- W1008959864 hasLocation W10089598641 @default.
- W1008959864 hasLocation W10089598642 @default.
- W1008959864 hasOpenAccess W1008959864 @default.
- W1008959864 hasPrimaryLocation W10089598641 @default.
- W1008959864 hasRelatedWork W132910000 @default.
- W1008959864 hasRelatedWork W1961100276 @default.
- W1008959864 hasRelatedWork W1997751765 @default.
- W1008959864 hasRelatedWork W2027246577 @default.
- W1008959864 hasRelatedWork W2051973690 @default.
- W1008959864 hasRelatedWork W2323618188 @default.
- W1008959864 hasRelatedWork W2355655846 @default.
- W1008959864 hasRelatedWork W2380842768 @default.
- W1008959864 hasRelatedWork W4283025055 @default.
- W1008959864 hasRelatedWork W996173534 @default.
- W1008959864 hasVolume "89" @default.
- W1008959864 isParatext "false" @default.
- W1008959864 isRetracted "false" @default.
- W1008959864 magId "1008959864" @default.
- W1008959864 workType "article" @default.