Matches in SemOpenAlex for { <https://semopenalex.org/work/W1011630013> ?p ?o ?g. }
- W1011630013 endingPage "325" @default.
- W1011630013 startingPage "279" @default.
- W1011630013 abstract "This chapter discusses the advanced methods of frequent pattern mining, which mines more complex forms of frequent patterns and considers user preferences or constraints to speed up the mining process. Frequent pattern mining has reached far beyond the basics due to substantial research, numerous extensions of the problem scope, and broad application studies. An in-depth coverage of methods for mining many kinds of patterns is included elaborating on: multilevel patterns, multidimensional patterns, patterns in continuous data, rare patterns, negative patterns, constrained frequent patterns, frequent patterns in high-dimensional data, colossal patterns, and compressed and approximate patterns. Other pattern mining themes, including mining sequential and structured patterns and mining patterns from spatiotemporal, multimedia, and stream data, are considered more advanced. Pattern mining is a more general term than frequent pattern mining since the former covers rare and negative patterns as well. However, when there is no ambiguity, the two terms are used interchangeably. In addition to mining for basic frequent itemsets and associations, advanced forms of patterns can be mined such as multilevel associations and multidimensional associations, quantitative association rules, rare patterns, and negative patterns. Users can also mine high-dimensional patterns and compressed or approximate patterns. Frequent pattern mining has many diverse applications, ranging from pattern-based data cleaning to pattern-based classification, clustering, and outlier or exception analysis." @default.
- W1011630013 created "2016-06-24" @default.
- W1011630013 creator A5019539533 @default.
- W1011630013 creator A5033935560 @default.
- W1011630013 creator A5062247330 @default.
- W1011630013 date "2012-01-01" @default.
- W1011630013 modified "2023-09-24" @default.
- W1011630013 title "Advanced Pattern Mining" @default.
- W1011630013 cites W1513522676 @default.
- W1011630013 cites W1514516794 @default.
- W1011630013 cites W151889949 @default.
- W1011630013 cites W1520890006 @default.
- W1011630013 cites W1523901438 @default.
- W1011630013 cites W1532527097 @default.
- W1011630013 cites W1538285186 @default.
- W1011630013 cites W1553409264 @default.
- W1011630013 cites W1565377632 @default.
- W1011630013 cites W1567790484 @default.
- W1011630013 cites W1578959085 @default.
- W1011630013 cites W1590503460 @default.
- W1011630013 cites W1608194207 @default.
- W1011630013 cites W1641039719 @default.
- W1011630013 cites W1641749581 @default.
- W1011630013 cites W168014760 @default.
- W1011630013 cites W1823692244 @default.
- W1011630013 cites W1861465509 @default.
- W1011630013 cites W1892399053 @default.
- W1011630013 cites W189580180 @default.
- W1011630013 cites W1918522533 @default.
- W1011630013 cites W1965731052 @default.
- W1011630013 cites W1974265704 @default.
- W1011630013 cites W1977496278 @default.
- W1011630013 cites W1978387271 @default.
- W1011630013 cites W1983524036 @default.
- W1011630013 cites W1999115460 @default.
- W1011630013 cites W2029438113 @default.
- W1011630013 cites W2040158750 @default.
- W1011630013 cites W2050123402 @default.
- W1011630013 cites W2054520963 @default.
- W1011630013 cites W2069980026 @default.
- W1011630013 cites W2077720176 @default.
- W1011630013 cites W2085638007 @default.
- W1011630013 cites W2097122809 @default.
- W1011630013 cites W2097800052 @default.
- W1011630013 cites W2098296210 @default.
- W1011630013 cites W2100080493 @default.
- W1011630013 cites W2100356657 @default.
- W1011630013 cites W2103269566 @default.
- W1011630013 cites W2109272824 @default.
- W1011630013 cites W2112558645 @default.
- W1011630013 cites W2113139394 @default.
- W1011630013 cites W2116029313 @default.
- W1011630013 cites W2117169652 @default.
- W1011630013 cites W2117530081 @default.
- W1011630013 cites W2118843309 @default.
- W1011630013 cites W2122766005 @default.
- W1011630013 cites W2125714474 @default.
- W1011630013 cites W2136003390 @default.
- W1011630013 cites W2136593687 @default.
- W1011630013 cites W2136663836 @default.
- W1011630013 cites W2137012502 @default.
- W1011630013 cites W2145539275 @default.
- W1011630013 cites W2147694185 @default.
- W1011630013 cites W2148693963 @default.
- W1011630013 cites W2150045644 @default.
- W1011630013 cites W2154642793 @default.
- W1011630013 cites W2155358700 @default.
- W1011630013 cites W2156026066 @default.
- W1011630013 cites W2157521848 @default.
- W1011630013 cites W2158454296 @default.
- W1011630013 cites W2164976357 @default.
- W1011630013 cites W2168196587 @default.
- W1011630013 cites W2170146448 @default.
- W1011630013 cites W2170726034 @default.
- W1011630013 cites W2541132147 @default.
- W1011630013 cites W3176132770 @default.
- W1011630013 cites W76928844 @default.
- W1011630013 doi "https://doi.org/10.1016/b978-0-12-381479-1.00007-1" @default.
- W1011630013 hasPublicationYear "2012" @default.
- W1011630013 type Work @default.
- W1011630013 sameAs 1011630013 @default.
- W1011630013 citedByCount "45" @default.
- W1011630013 countsByYear W10116300132014 @default.
- W1011630013 countsByYear W10116300132016 @default.
- W1011630013 countsByYear W10116300132017 @default.
- W1011630013 countsByYear W10116300132018 @default.
- W1011630013 countsByYear W10116300132019 @default.
- W1011630013 countsByYear W10116300132020 @default.
- W1011630013 countsByYear W10116300132021 @default.
- W1011630013 countsByYear W10116300132022 @default.
- W1011630013 crossrefType "book-chapter" @default.
- W1011630013 hasAuthorship W1011630013A5019539533 @default.
- W1011630013 hasAuthorship W1011630013A5033935560 @default.
- W1011630013 hasAuthorship W1011630013A5062247330 @default.
- W1011630013 hasConcept C105445830 @default.
- W1011630013 hasConcept C111919701 @default.
- W1011630013 hasConcept C124101348 @default.
- W1011630013 hasConcept C154945302 @default.