Matches in SemOpenAlex for { <https://semopenalex.org/work/W10130694> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W10130694 endingPage "262" @default.
- W10130694 startingPage "252" @default.
- W10130694 abstract "The Review of Diabetic Studies,2010,7,4,252-262.DOI:10.1900/RDS.2010.7.252Published:February 2011Type:Review Article Authors:Shankaracharya, Devang Odedra, Subir Samanta, and Ambarish S Vidyarthi Author(s) affiliations:Shankaracharya1, Devang Odedra1, Subir Samanta2, and Ambarish S. Vidyarthi1 1Department of Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, India. 2Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Ranchi 835215, India. Abstract:The development of an effective diabetes diagnosis system by taking advantage of computational intelligence is regarded as a primary goal nowadays. Many approaches based on artificial network and machine learning algorithms have been developed and tested against diabetes datasets, which were mostly related to individuals of Pima Indian origin. Yet, despite high accuracies of up to 99% in predicting the correct diabetes diagnosis, none of these approaches have reached clinical application so far. One reason for this failure may be that diabetologists or clinical investigators are sparsely informed about, or trained in the use of, computational diagnosis tools. Therefore, this article aims at sketching out an outline of the wide range of options, recent developments, and potentials in machine learning algorithms as diabetes diagnosis tools. One focus is on supervised and unsupervised methods, which have made significant impacts in the detection and diagnosis of diabetes at primary and advanced stages. Particular attention is paid to algorithms that show promise in improving diabetes diagnosis. A key advance has been the development of a more in-depth understanding and theoretical analysis of critical issues related to algorithmic construction and learning theory. These include trade-offs for maximizing generalization performance, use of physically realistic constraints, and incorporation of prior knowledge and uncertainty. The review presents and explains the most accurate algorithms, and discusses advantages and pitfalls of methodologies. This should provide a good resource for researchers from all backgrounds interested in computational intelligence-based diabetes diagnosis methods, and allows them to extend their knowledge into this kind of research. Keywords:Algorithm, Artificial neural network, Computational, Diabetes diagnosis, Learning, Logistic regressionView:PDF (272.72 KB)" @default.
- W10130694 created "2016-06-24" @default.
- W10130694 creator A5004698884 @default.
- W10130694 creator A5024795008 @default.
- W10130694 creator A5068279144 @default.
- W10130694 creator A5083608968 @default.
- W10130694 date "2010-01-01" @default.
- W10130694 modified "2023-10-06" @default.
- W10130694 title "Computational Intelligence in Early Diabetes Diagnosis: A Review" @default.
- W10130694 doi "https://doi.org/10.1900/rds.2010.7.252" @default.
- W10130694 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3143540" @default.
- W10130694 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21713313" @default.
- W10130694 hasPublicationYear "2010" @default.
- W10130694 type Work @default.
- W10130694 sameAs 10130694 @default.
- W10130694 citedByCount "66" @default.
- W10130694 countsByYear W101306942012 @default.
- W10130694 countsByYear W101306942013 @default.
- W10130694 countsByYear W101306942014 @default.
- W10130694 countsByYear W101306942015 @default.
- W10130694 countsByYear W101306942016 @default.
- W10130694 countsByYear W101306942017 @default.
- W10130694 countsByYear W101306942018 @default.
- W10130694 countsByYear W101306942019 @default.
- W10130694 countsByYear W101306942020 @default.
- W10130694 countsByYear W101306942021 @default.
- W10130694 countsByYear W101306942022 @default.
- W10130694 countsByYear W101306942023 @default.
- W10130694 crossrefType "journal-article" @default.
- W10130694 hasAuthorship W10130694A5004698884 @default.
- W10130694 hasAuthorship W10130694A5024795008 @default.
- W10130694 hasAuthorship W10130694A5068279144 @default.
- W10130694 hasAuthorship W10130694A5083608968 @default.
- W10130694 hasBestOaLocation W101306941 @default.
- W10130694 hasConcept C119857082 @default.
- W10130694 hasConcept C134018914 @default.
- W10130694 hasConcept C139502532 @default.
- W10130694 hasConcept C154945302 @default.
- W10130694 hasConcept C177713679 @default.
- W10130694 hasConcept C2522767166 @default.
- W10130694 hasConcept C26517878 @default.
- W10130694 hasConcept C38652104 @default.
- W10130694 hasConcept C41008148 @default.
- W10130694 hasConcept C555293320 @default.
- W10130694 hasConcept C71924100 @default.
- W10130694 hasConceptScore W10130694C119857082 @default.
- W10130694 hasConceptScore W10130694C134018914 @default.
- W10130694 hasConceptScore W10130694C139502532 @default.
- W10130694 hasConceptScore W10130694C154945302 @default.
- W10130694 hasConceptScore W10130694C177713679 @default.
- W10130694 hasConceptScore W10130694C2522767166 @default.
- W10130694 hasConceptScore W10130694C26517878 @default.
- W10130694 hasConceptScore W10130694C38652104 @default.
- W10130694 hasConceptScore W10130694C41008148 @default.
- W10130694 hasConceptScore W10130694C555293320 @default.
- W10130694 hasConceptScore W10130694C71924100 @default.
- W10130694 hasIssue "4" @default.
- W10130694 hasLocation W101306941 @default.
- W10130694 hasLocation W101306942 @default.
- W10130694 hasLocation W101306943 @default.
- W10130694 hasLocation W101306944 @default.
- W10130694 hasOpenAccess W10130694 @default.
- W10130694 hasPrimaryLocation W101306941 @default.
- W10130694 hasRelatedWork W1563850031 @default.
- W10130694 hasRelatedWork W2233866314 @default.
- W10130694 hasRelatedWork W2415759662 @default.
- W10130694 hasRelatedWork W2748952813 @default.
- W10130694 hasRelatedWork W2899084033 @default.
- W10130694 hasRelatedWork W2961085424 @default.
- W10130694 hasRelatedWork W3036934084 @default.
- W10130694 hasRelatedWork W4286629047 @default.
- W10130694 hasRelatedWork W4306674287 @default.
- W10130694 hasRelatedWork W4224009465 @default.
- W10130694 hasVolume "7" @default.
- W10130694 isParatext "false" @default.
- W10130694 isRetracted "false" @default.
- W10130694 magId "10130694" @default.
- W10130694 workType "article" @default.