Matches in SemOpenAlex for { <https://semopenalex.org/work/W1014964314> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W1014964314 abstract "We now describe more complicated examples of theories that have topological integrals of motion. We start with the analog of the action integral (9.3) for a complex scalar field Ψ in two dimensions: $$S = int {l{d^3}} x = frac{1}{2}int {{partial _mu }} bar Psi {partial ^mu }Psi {d^3}x - frac{1}{8}lambda {int {({{left| Psi right|}^2} - {a^2})} ^2}{d^3}x$$(10.1), where μ = 0, 1, 2, x = (x 0, x 1, x 2 = (x 0, x), ∈ R 3, ∂ 0 = ∂ 0 = ∂/∂x 0 =∂/∂t and ∂ i = −∂ i for i = 1, 2. We can also think of Ψ as a two-component real scalar field, instead of a complex field." @default.
- W1014964314 created "2016-06-24" @default.
- W1014964314 creator A5053844156 @default.
- W1014964314 date "1993-01-01" @default.
- W1014964314 modified "2023-09-27" @default.
- W1014964314 title "A Two-Dimensional Model. Abrikosov Vortices" @default.
- W1014964314 doi "https://doi.org/10.1007/978-3-662-02943-5_12" @default.
- W1014964314 hasPublicationYear "1993" @default.
- W1014964314 type Work @default.
- W1014964314 sameAs 1014964314 @default.
- W1014964314 citedByCount "0" @default.
- W1014964314 crossrefType "book-chapter" @default.
- W1014964314 hasAuthorship W1014964314A5053844156 @default.
- W1014964314 hasConcept C110521144 @default.
- W1014964314 hasConcept C114614502 @default.
- W1014964314 hasConcept C121332964 @default.
- W1014964314 hasConcept C153294291 @default.
- W1014964314 hasConcept C188721877 @default.
- W1014964314 hasConcept C202444582 @default.
- W1014964314 hasConcept C2524010 @default.
- W1014964314 hasConcept C2778113609 @default.
- W1014964314 hasConcept C33923547 @default.
- W1014964314 hasConcept C37914503 @default.
- W1014964314 hasConcept C57691317 @default.
- W1014964314 hasConcept C62520636 @default.
- W1014964314 hasConcept C9652623 @default.
- W1014964314 hasConceptScore W1014964314C110521144 @default.
- W1014964314 hasConceptScore W1014964314C114614502 @default.
- W1014964314 hasConceptScore W1014964314C121332964 @default.
- W1014964314 hasConceptScore W1014964314C153294291 @default.
- W1014964314 hasConceptScore W1014964314C188721877 @default.
- W1014964314 hasConceptScore W1014964314C202444582 @default.
- W1014964314 hasConceptScore W1014964314C2524010 @default.
- W1014964314 hasConceptScore W1014964314C2778113609 @default.
- W1014964314 hasConceptScore W1014964314C33923547 @default.
- W1014964314 hasConceptScore W1014964314C37914503 @default.
- W1014964314 hasConceptScore W1014964314C57691317 @default.
- W1014964314 hasConceptScore W1014964314C62520636 @default.
- W1014964314 hasConceptScore W1014964314C9652623 @default.
- W1014964314 hasLocation W10149643141 @default.
- W1014964314 hasOpenAccess W1014964314 @default.
- W1014964314 hasPrimaryLocation W10149643141 @default.
- W1014964314 hasRelatedWork W12755585 @default.
- W1014964314 hasRelatedWork W1491456826 @default.
- W1014964314 hasRelatedWork W1493731866 @default.
- W1014964314 hasRelatedWork W1553339417 @default.
- W1014964314 hasRelatedWork W1561998543 @default.
- W1014964314 hasRelatedWork W1578474151 @default.
- W1014964314 hasRelatedWork W1975451046 @default.
- W1014964314 hasRelatedWork W2091335895 @default.
- W1014964314 hasRelatedWork W221125296 @default.
- W1014964314 hasRelatedWork W2541220278 @default.
- W1014964314 hasRelatedWork W2609692558 @default.
- W1014964314 hasRelatedWork W2751721281 @default.
- W1014964314 hasRelatedWork W2928649169 @default.
- W1014964314 hasRelatedWork W2952172114 @default.
- W1014964314 hasRelatedWork W2977576228 @default.
- W1014964314 hasRelatedWork W3048304640 @default.
- W1014964314 hasRelatedWork W3098826264 @default.
- W1014964314 hasRelatedWork W3104915432 @default.
- W1014964314 hasRelatedWork W3126134624 @default.
- W1014964314 hasRelatedWork W38772528 @default.
- W1014964314 isParatext "false" @default.
- W1014964314 isRetracted "false" @default.
- W1014964314 magId "1014964314" @default.
- W1014964314 workType "book-chapter" @default.