Matches in SemOpenAlex for { <https://semopenalex.org/work/W1015380743> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1015380743 abstract "Magnetic resonance imaging (MRI) experiments can be sensitised to the erratic thermal displacement of (water) molecules by the application of magnetic field gradients. The associated signal decay allows for the quantification of the Brownian motion in terms of diffusion coefficients. In linearly structured biological tissues such as brain white matter where cell boundaries of bundled nerve fibres restrict and hinder free propagation, a marked dependence of the results on the direction of the gradients can be observed, the highest diffusivity being measured parallel to the fibre orientation. On the comparatively course scale of the MRI resolution contrasted with the cellular level, some aspects of the molecular dynamics in simple anisotropic geometries have been successfully characterised by an average diffusion tensor whose main eigenvector then coincides with the material's principal direction. For the reliable determination of the model parameters, a considerable number of data sets has to be acquired. Since the computation relies on local signal comparison, this time-consuming experiment is prone to errors arising from subject movement in in-vivo studies.To date, the fastest MRI diffusion measurements are based on imaging sequences which are encumbered by distortion artefacts partly due to their reliance on gradient echos for signal generation. In contrast, the approach followed in this thesis builds on the sizeably slower single-shot stimulated echo acquisition mode (SSSTEAM) which however maps the anatomy truthfully. In order to better comply with the stringent time constraints, a data space reduction scheme, parallel imaging, has been adopted here. This method makes use of the data redundancy afforded by the simultaneous recording of the NMR (Nuclear Magnetic Resonance) signal with multiple receivers. For the application to SSSTEAM particular care has to be taken to redistribute the available magnetisation contributing to the signal over the data space via a defined modulation of the excitation strength in order to control the point spread function (PSF) of the acquisition and thus to honour the nominal resolution. The current work presents an exact approach to this problem which supports the shaping of arbitrary PSFs as well as a broader class of data space trajectories than a previously published approximate ansatz which it extends.In comparison with a reference sequence, diffusion-weighted measurements using SSSTEAM with the minimal parallel imaging reduction factor are here shown to yield data with uncompromised quality as measured by the signal-to-noise ratio (SNR), in spite of being faster by 45% than the non-accelerated experiment. Theoretical considerations even suggest the possibility of future SNR improvements at increased speed-ups.For the investigation of the image quality a computer program has been devised, in particular to test the measured data for their potential to help elucidate the gross fibre architecture of the human brain by means of main diffusion direction tractography. In addition to the published descriptions of anatomical white matter structures already traced with diffusion tensor MRI, the anatomical fidelity of SSSTEAM allows the reconstruction of fibres in regions poorly accessible to gradient echo sequences. For example the brain stem and even the optic nerve and its surrounding muscles can be depicted. Moreover, the presented tractography-based segmentation results suggest a revisal of the current view on the nature of the axon bundles populating the anterior internal capsule." @default.
- W1015380743 created "2016-06-24" @default.
- W1015380743 creator A5024241402 @default.
- W1015380743 date "2022-02-20" @default.
- W1015380743 modified "2023-09-24" @default.
- W1015380743 title "Parallele Datenakquisition zur Beschleunigung Diffusionsgewichteter Kernspintomographie mit Stimulierten Echos" @default.
- W1015380743 doi "https://doi.org/10.53846/goediss-2699" @default.
- W1015380743 hasPublicationYear "2022" @default.
- W1015380743 type Work @default.
- W1015380743 sameAs 1015380743 @default.
- W1015380743 citedByCount "3" @default.
- W1015380743 countsByYear W10153807432014 @default.
- W1015380743 crossrefType "dissertation" @default.
- W1015380743 hasAuthorship W1015380743A5024241402 @default.
- W1015380743 hasBestOaLocation W10153807431 @default.
- W1015380743 hasConcept C107551265 @default.
- W1015380743 hasConcept C120665830 @default.
- W1015380743 hasConcept C121332964 @default.
- W1015380743 hasConcept C126780896 @default.
- W1015380743 hasConcept C126838900 @default.
- W1015380743 hasConcept C143409427 @default.
- W1015380743 hasConcept C149550507 @default.
- W1015380743 hasConcept C15744967 @default.
- W1015380743 hasConcept C16345878 @default.
- W1015380743 hasConcept C186060115 @default.
- W1015380743 hasConcept C194257627 @default.
- W1015380743 hasConcept C199360897 @default.
- W1015380743 hasConcept C2524010 @default.
- W1015380743 hasConcept C2779843651 @default.
- W1015380743 hasConcept C31972630 @default.
- W1015380743 hasConcept C33923547 @default.
- W1015380743 hasConcept C41008148 @default.
- W1015380743 hasConcept C46141821 @default.
- W1015380743 hasConcept C46362747 @default.
- W1015380743 hasConcept C49040817 @default.
- W1015380743 hasConcept C54170458 @default.
- W1015380743 hasConcept C542102704 @default.
- W1015380743 hasConcept C71924100 @default.
- W1015380743 hasConcept C85725439 @default.
- W1015380743 hasConcept C86803240 @default.
- W1015380743 hasConceptScore W1015380743C107551265 @default.
- W1015380743 hasConceptScore W1015380743C120665830 @default.
- W1015380743 hasConceptScore W1015380743C121332964 @default.
- W1015380743 hasConceptScore W1015380743C126780896 @default.
- W1015380743 hasConceptScore W1015380743C126838900 @default.
- W1015380743 hasConceptScore W1015380743C143409427 @default.
- W1015380743 hasConceptScore W1015380743C149550507 @default.
- W1015380743 hasConceptScore W1015380743C15744967 @default.
- W1015380743 hasConceptScore W1015380743C16345878 @default.
- W1015380743 hasConceptScore W1015380743C186060115 @default.
- W1015380743 hasConceptScore W1015380743C194257627 @default.
- W1015380743 hasConceptScore W1015380743C199360897 @default.
- W1015380743 hasConceptScore W1015380743C2524010 @default.
- W1015380743 hasConceptScore W1015380743C2779843651 @default.
- W1015380743 hasConceptScore W1015380743C31972630 @default.
- W1015380743 hasConceptScore W1015380743C33923547 @default.
- W1015380743 hasConceptScore W1015380743C41008148 @default.
- W1015380743 hasConceptScore W1015380743C46141821 @default.
- W1015380743 hasConceptScore W1015380743C46362747 @default.
- W1015380743 hasConceptScore W1015380743C49040817 @default.
- W1015380743 hasConceptScore W1015380743C54170458 @default.
- W1015380743 hasConceptScore W1015380743C542102704 @default.
- W1015380743 hasConceptScore W1015380743C71924100 @default.
- W1015380743 hasConceptScore W1015380743C85725439 @default.
- W1015380743 hasConceptScore W1015380743C86803240 @default.
- W1015380743 hasLocation W10153807431 @default.
- W1015380743 hasOpenAccess W1015380743 @default.
- W1015380743 hasPrimaryLocation W10153807431 @default.
- W1015380743 hasRelatedWork W11491160 @default.
- W1015380743 hasRelatedWork W11552193 @default.
- W1015380743 hasRelatedWork W1589735 @default.
- W1015380743 hasRelatedWork W4079230 @default.
- W1015380743 hasRelatedWork W5835172 @default.
- W1015380743 hasRelatedWork W7061185 @default.
- W1015380743 hasRelatedWork W8499764 @default.
- W1015380743 hasRelatedWork W8958766 @default.
- W1015380743 hasRelatedWork W9411884 @default.
- W1015380743 hasRelatedWork W2127321 @default.
- W1015380743 isParatext "false" @default.
- W1015380743 isRetracted "false" @default.
- W1015380743 magId "1015380743" @default.
- W1015380743 workType "dissertation" @default.