Matches in SemOpenAlex for { <https://semopenalex.org/work/W10174967> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W10174967 endingPage "198" @default.
- W10174967 startingPage "177" @default.
- W10174967 abstract "Because of their use as priors in image analysis, the interest in parameter estimation for Gibbs random fields has rosen recently. Gibbs fields form an exponential family, so maximum likelihood would be the estimator of first choice. Unfortunately it is extremly difficult to compute. Other estimators which are easier to compute have been proposed: the Coding and the pseudo-maximum likelihood estimator (Besag, 1974), a minimum chi-square estimator (Glötzl and Rauchenschwandtner, 1981; Possolo, 1986-a) and the conditional least squares estimator (Lele et Ord, 1986), cf the definitions below in section 2.2. - These estimators are all known to be consistent. Hence it is a natural question to compare efficiency among these simple estimators and with respect to the maximum likehood estimator. We do this here in the simplest non trivial case, the d-dimensional nearest neighbor isotropic Ising model with external field. We show that both the pseudo maximum likelihood and the conditional least squares estimator are asymptotically equivalent to a minimum chi-square estimator when the weight matrix for the latter is chosen appropriately (corollary 2). These weight matrices are different from the optimal matrix. Hence we expect also the resulting estimators to be different although in all our examples the maximum pseudo likelihood and the minimum chi-square estimator with optimal weight turned out to be asymptotically equivalent. In particular, our results do not confirm the superior behavior of minimum chi-square over pseudo maximun likehood reported in Possolo (1986a). By example, we show that conditional least squares and minimum chi-square with the identity matrix as weights can be worse than the optimal minimum chi-square estimator. Compared with the maximum likelihood, the easily computable estimators are not bad if the interaction is weak, but much worse if the interaction is strong. Our results suggest that their asymptotic efficiency tends to zero as one approaches the critical point." @default.
- W10174967 created "2016-06-24" @default.
- W10174967 creator A5021780243 @default.
- W10174967 creator A5033130809 @default.
- W10174967 date "1992-01-01" @default.
- W10174967 modified "2023-10-01" @default.
- W10174967 title "Asymptotic Comparison of Estimators in the Ising Model" @default.
- W10174967 cites W14096908 @default.
- W10174967 cites W1567885833 @default.
- W10174967 cites W1970999172 @default.
- W10174967 cites W2015625998 @default.
- W10174967 cites W2026830005 @default.
- W10174967 cites W2034767804 @default.
- W10174967 cites W2046061414 @default.
- W10174967 cites W2047694274 @default.
- W10174967 cites W2053476892 @default.
- W10174967 cites W2083424806 @default.
- W10174967 cites W2091200622 @default.
- W10174967 cites W2132353975 @default.
- W10174967 doi "https://doi.org/10.1007/978-1-4612-2920-9_12" @default.
- W10174967 hasPublicationYear "1992" @default.
- W10174967 type Work @default.
- W10174967 sameAs 10174967 @default.
- W10174967 citedByCount "34" @default.
- W10174967 countsByYear W101749672012 @default.
- W10174967 countsByYear W101749672014 @default.
- W10174967 countsByYear W101749672015 @default.
- W10174967 countsByYear W101749672016 @default.
- W10174967 countsByYear W101749672018 @default.
- W10174967 countsByYear W101749672020 @default.
- W10174967 countsByYear W101749672021 @default.
- W10174967 countsByYear W101749672023 @default.
- W10174967 crossrefType "book-chapter" @default.
- W10174967 hasAuthorship W10174967A5021780243 @default.
- W10174967 hasAuthorship W10174967A5033130809 @default.
- W10174967 hasConcept C105795698 @default.
- W10174967 hasConcept C114614502 @default.
- W10174967 hasConcept C133939421 @default.
- W10174967 hasConcept C165646398 @default.
- W10174967 hasConcept C185429906 @default.
- W10174967 hasConcept C28826006 @default.
- W10174967 hasConcept C33923547 @default.
- W10174967 hasConcept C38689907 @default.
- W10174967 hasConcept C90652560 @default.
- W10174967 hasConceptScore W10174967C105795698 @default.
- W10174967 hasConceptScore W10174967C114614502 @default.
- W10174967 hasConceptScore W10174967C133939421 @default.
- W10174967 hasConceptScore W10174967C165646398 @default.
- W10174967 hasConceptScore W10174967C185429906 @default.
- W10174967 hasConceptScore W10174967C28826006 @default.
- W10174967 hasConceptScore W10174967C33923547 @default.
- W10174967 hasConceptScore W10174967C38689907 @default.
- W10174967 hasConceptScore W10174967C90652560 @default.
- W10174967 hasLocation W101749671 @default.
- W10174967 hasOpenAccess W10174967 @default.
- W10174967 hasPrimaryLocation W101749671 @default.
- W10174967 hasRelatedWork W1551209614 @default.
- W10174967 hasRelatedWork W1922902215 @default.
- W10174967 hasRelatedWork W1990727401 @default.
- W10174967 hasRelatedWork W2006978856 @default.
- W10174967 hasRelatedWork W2047680666 @default.
- W10174967 hasRelatedWork W2294365215 @default.
- W10174967 hasRelatedWork W2910434125 @default.
- W10174967 hasRelatedWork W2912798297 @default.
- W10174967 hasRelatedWork W3122093020 @default.
- W10174967 hasRelatedWork W2564626198 @default.
- W10174967 isParatext "false" @default.
- W10174967 isRetracted "false" @default.
- W10174967 magId "10174967" @default.
- W10174967 workType "book-chapter" @default.