Matches in SemOpenAlex for { <https://semopenalex.org/work/W1020186056> ?p ?o ?g. }
- W1020186056 endingPage "201" @default.
- W1020186056 startingPage "194" @default.
- W1020186056 abstract "Wind speed prediction is one important methods to guarantee the wind energy integrated into the whole power system smoothly. However, wind power has a non–schedulable nature due to the strong stochastic nature and dynamic uncertainty nature of wind speed. Therefore, wind speed prediction is an indispensable requirement for power system operators. Two new approaches for hourly wind speed prediction are developed in this study by integrating the single multiplicative neuron model and the iterated nonlinear filters for updating the wind speed sequence accurately. In the presented methods, a nonlinear state–space model is first formed based on the single multiplicative neuron model and then the iterated nonlinear filters are employed to perform dynamic state estimation on wind speed sequence with stochastic uncertainty. The suggested approaches are demonstrated using three cases wind speed data and are compared with autoregressive moving average, artificial neural network, kernel ridge regression based residual active learning and single multiplicative neuron model methods. Three types of prediction errors, mean absolute error improvement ratio and running time are employed for different models’ performance comparison. Comparison results from Table 1, Table 2, Table 3 indicate that the presented strategies have much better performance for hourly wind speed prediction than other technologies." @default.
- W1020186056 created "2016-06-24" @default.
- W1020186056 creator A5006743312 @default.
- W1020186056 creator A5021138470 @default.
- W1020186056 creator A5033229239 @default.
- W1020186056 creator A5046911187 @default.
- W1020186056 creator A5064345829 @default.
- W1020186056 creator A5086025796 @default.
- W1020186056 creator A5087371147 @default.
- W1020186056 date "2015-08-01" @default.
- W1020186056 modified "2023-09-30" @default.
- W1020186056 title "A study of single multiplicative neuron model with nonlinear filters for hourly wind speed prediction" @default.
- W1020186056 cites W1976026023 @default.
- W1020186056 cites W1976741337 @default.
- W1020186056 cites W1977653081 @default.
- W1020186056 cites W1979331645 @default.
- W1020186056 cites W1984061847 @default.
- W1020186056 cites W1995234002 @default.
- W1020186056 cites W2003948968 @default.
- W1020186056 cites W2009680990 @default.
- W1020186056 cites W2016456873 @default.
- W1020186056 cites W2016509397 @default.
- W1020186056 cites W2021826571 @default.
- W1020186056 cites W2024692966 @default.
- W1020186056 cites W2030410030 @default.
- W1020186056 cites W2033852689 @default.
- W1020186056 cites W2036681246 @default.
- W1020186056 cites W2038751902 @default.
- W1020186056 cites W2044459470 @default.
- W1020186056 cites W2053927499 @default.
- W1020186056 cites W2054091988 @default.
- W1020186056 cites W2057989489 @default.
- W1020186056 cites W2058504886 @default.
- W1020186056 cites W2070960910 @default.
- W1020186056 cites W2074715647 @default.
- W1020186056 cites W2077019318 @default.
- W1020186056 cites W2081760759 @default.
- W1020186056 cites W2083091991 @default.
- W1020186056 cites W2085618508 @default.
- W1020186056 cites W2086019018 @default.
- W1020186056 cites W2092681411 @default.
- W1020186056 cites W2095491279 @default.
- W1020186056 cites W2111395484 @default.
- W1020186056 cites W2153945706 @default.
- W1020186056 cites W2159217888 @default.
- W1020186056 cites W3125266670 @default.
- W1020186056 doi "https://doi.org/10.1016/j.energy.2015.04.075" @default.
- W1020186056 hasPublicationYear "2015" @default.
- W1020186056 type Work @default.
- W1020186056 sameAs 1020186056 @default.
- W1020186056 citedByCount "13" @default.
- W1020186056 countsByYear W10201860562017 @default.
- W1020186056 countsByYear W10201860562018 @default.
- W1020186056 countsByYear W10201860562020 @default.
- W1020186056 countsByYear W10201860562021 @default.
- W1020186056 countsByYear W10201860562022 @default.
- W1020186056 crossrefType "journal-article" @default.
- W1020186056 hasAuthorship W1020186056A5006743312 @default.
- W1020186056 hasAuthorship W1020186056A5021138470 @default.
- W1020186056 hasAuthorship W1020186056A5033229239 @default.
- W1020186056 hasAuthorship W1020186056A5046911187 @default.
- W1020186056 hasAuthorship W1020186056A5064345829 @default.
- W1020186056 hasAuthorship W1020186056A5086025796 @default.
- W1020186056 hasAuthorship W1020186056A5087371147 @default.
- W1020186056 hasConcept C11413529 @default.
- W1020186056 hasConcept C119599485 @default.
- W1020186056 hasConcept C121332964 @default.
- W1020186056 hasConcept C127413603 @default.
- W1020186056 hasConcept C134306372 @default.
- W1020186056 hasConcept C140479938 @default.
- W1020186056 hasConcept C153294291 @default.
- W1020186056 hasConcept C154945302 @default.
- W1020186056 hasConcept C158622935 @default.
- W1020186056 hasConcept C161067210 @default.
- W1020186056 hasConcept C2775924081 @default.
- W1020186056 hasConcept C33923547 @default.
- W1020186056 hasConcept C41008148 @default.
- W1020186056 hasConcept C42747912 @default.
- W1020186056 hasConcept C47446073 @default.
- W1020186056 hasConcept C50644808 @default.
- W1020186056 hasConcept C62520636 @default.
- W1020186056 hasConcept C78600449 @default.
- W1020186056 hasConceptScore W1020186056C11413529 @default.
- W1020186056 hasConceptScore W1020186056C119599485 @default.
- W1020186056 hasConceptScore W1020186056C121332964 @default.
- W1020186056 hasConceptScore W1020186056C127413603 @default.
- W1020186056 hasConceptScore W1020186056C134306372 @default.
- W1020186056 hasConceptScore W1020186056C140479938 @default.
- W1020186056 hasConceptScore W1020186056C153294291 @default.
- W1020186056 hasConceptScore W1020186056C154945302 @default.
- W1020186056 hasConceptScore W1020186056C158622935 @default.
- W1020186056 hasConceptScore W1020186056C161067210 @default.
- W1020186056 hasConceptScore W1020186056C2775924081 @default.
- W1020186056 hasConceptScore W1020186056C33923547 @default.
- W1020186056 hasConceptScore W1020186056C41008148 @default.
- W1020186056 hasConceptScore W1020186056C42747912 @default.
- W1020186056 hasConceptScore W1020186056C47446073 @default.
- W1020186056 hasConceptScore W1020186056C50644808 @default.