Matches in SemOpenAlex for { <https://semopenalex.org/work/W102633716> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W102633716 abstract "This thesis discusses various properties of a number of differential equations which we will term integrable. There are many definitions of this word, but we will confine ourselves to two possible characterisations — either an equation can be transformed by a suitable change of variables to a linear equation, or there exists an infinite number of conserved quantities associated with the equation that commute with each other via some Hamiltonian structure. Both of these definitions rely heavily on the concept of the symmetry of a differential equation, and so Chapters 1 and 2 introduce and explain this idea, based on a geometrical theory of p.d.e.s, and describe the interaction of such methods with variational calculus and Hamiltonian systems. Chapter 3 discusses a somewhat ad hoc method for solving evolution equations involving a series ansatz that reproduces well-known solutions. The method seems to be related to symmetry methods, although the precise connection is unclear. The rest of the thesis is dedicated to the so-called Universal Field Equations and related models. In Chapter 4 we look at the simplest two-dimensional cases, the Bateman and Born-lnfeld equations. By looking at their generalised symmetries and Hamiltonian structures, we can prove that these equations satisfy both the definitions of integrability mentioned above. Chapter Five contains the general argument which demonstrates the linearisability of the Bateman Universal equation by calculation of its generalised symmetries. These symmetries are helpful in analysing and generalising the Lagrangian structure of Universal equations. An example of a linearisable analogue of the Born-lnfeld equation is also included. The chapter concludes with some speculation on Hamiltoian properties." @default.
- W102633716 created "2016-06-24" @default.
- W102633716 creator A5074529822 @default.
- W102633716 date "1996-01-01" @default.
- W102633716 modified "2023-09-23" @default.
- W102633716 title "Symmetry methods for integrable systems" @default.
- W102633716 hasPublicationYear "1996" @default.
- W102633716 type Work @default.
- W102633716 sameAs 102633716 @default.
- W102633716 citedByCount "0" @default.
- W102633716 crossrefType "dissertation" @default.
- W102633716 hasAuthorship W102633716A5074529822 @default.
- W102633716 hasConcept C121770821 @default.
- W102633716 hasConcept C126255220 @default.
- W102633716 hasConcept C130787639 @default.
- W102633716 hasConcept C130979935 @default.
- W102633716 hasConcept C134306372 @default.
- W102633716 hasConcept C200741047 @default.
- W102633716 hasConcept C2524010 @default.
- W102633716 hasConcept C33923547 @default.
- W102633716 hasConcept C3445786 @default.
- W102633716 hasConcept C37914503 @default.
- W102633716 hasConcept C78045399 @default.
- W102633716 hasConcept C93779851 @default.
- W102633716 hasConcept C96469262 @default.
- W102633716 hasConceptScore W102633716C121770821 @default.
- W102633716 hasConceptScore W102633716C126255220 @default.
- W102633716 hasConceptScore W102633716C130787639 @default.
- W102633716 hasConceptScore W102633716C130979935 @default.
- W102633716 hasConceptScore W102633716C134306372 @default.
- W102633716 hasConceptScore W102633716C200741047 @default.
- W102633716 hasConceptScore W102633716C2524010 @default.
- W102633716 hasConceptScore W102633716C33923547 @default.
- W102633716 hasConceptScore W102633716C3445786 @default.
- W102633716 hasConceptScore W102633716C37914503 @default.
- W102633716 hasConceptScore W102633716C78045399 @default.
- W102633716 hasConceptScore W102633716C93779851 @default.
- W102633716 hasConceptScore W102633716C96469262 @default.
- W102633716 hasLocation W1026337161 @default.
- W102633716 hasOpenAccess W102633716 @default.
- W102633716 hasPrimaryLocation W1026337161 @default.
- W102633716 hasRelatedWork W100962814 @default.
- W102633716 hasRelatedWork W11372662 @default.
- W102633716 hasRelatedWork W1268340148 @default.
- W102633716 hasRelatedWork W1500851161 @default.
- W102633716 hasRelatedWork W1526681407 @default.
- W102633716 hasRelatedWork W1592637137 @default.
- W102633716 hasRelatedWork W1780804516 @default.
- W102633716 hasRelatedWork W1945880399 @default.
- W102633716 hasRelatedWork W1999345436 @default.
- W102633716 hasRelatedWork W2012471276 @default.
- W102633716 hasRelatedWork W2056894525 @default.
- W102633716 hasRelatedWork W2067614697 @default.
- W102633716 hasRelatedWork W2139714789 @default.
- W102633716 hasRelatedWork W2264033566 @default.
- W102633716 hasRelatedWork W2728366403 @default.
- W102633716 hasRelatedWork W3099669045 @default.
- W102633716 hasRelatedWork W3105088771 @default.
- W102633716 hasRelatedWork W65984805 @default.
- W102633716 hasRelatedWork W1984307411 @default.
- W102633716 hasRelatedWork W2515494768 @default.
- W102633716 isParatext "false" @default.
- W102633716 isRetracted "false" @default.
- W102633716 magId "102633716" @default.
- W102633716 workType "dissertation" @default.