Matches in SemOpenAlex for { <https://semopenalex.org/work/W1030806467> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W1030806467 abstract "General Circulation Models (GCMs) are tools designed to simulate time series of climate variables globally, accounting for effects of greenhouse gases in the atmosphere. They attempt to represent the physical processes in the atmosphere, ocean, cryosphere and land surface. They are currently the most credible tools available for simulating the response of the global climate system to increasing greenhouse gas concentrations, and to provide estimates of climate variables (e.g. air temperature, precipitation, wind speed, pressure etc.) on a global scale. GCMs demonstrate a significant skill at the continental and hemispheric spatial scales and incorporate a large proportion of the complexity of the global system; they are, however, inherently unable to represent local subgrid-scale features and dynamics. The spatial scale on which a GCM can operate (e.g., 3.75° longitude x 3.75° latitude for Coupled Global Climate Model, CGCM2) is very coarse compared to that of a hydrologic process (e.g., precipitation in a region, streamflow in a river etc.) of interest in the climate change impact assessment studies. Moreover, accuracy of GCMs, in general, decreases from climate related variables, such as wind, temperature, humidity and air pressure to hydrologic variables such as precipitation, evapotranspiration, runoff and soil moisture, which are also simulated by GCMs. These limitations of the GCMs restrict the direct use of their output in hydrology. This thesis deals with developing statistical downscaling models to assess climate change impacts and methodologies to address GCM and scenario uncertainties in assessing climate change impacts on hydrology. Downscaling, in the context of hydrology, is a method to project the hydrologic variables (e.g., rainfall and streamflow) at a smaller scale based on large scale climatological variables (e.g., mean sea level pressure) simulated by a GCM. A statistical downscaling model is first developed in the thesis to predict the rainfall over Orissa meteorological subdivision from GCM output of large scale Mean Sea Level Pressure (MSLP). Gridded monthly MSLP data for the period 1948 to 2002, are obtained from the National Center for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) reanalysis project for a region spanning 150 N -250 N in latitude and 800 E -900 E in longitude that encapsulates the study region. The downscaling model comprises of Principal Component Analysis (PCA), Fuzzy Clustering and Linear Regression. PCA is carried out to reduce the dimensionality of the larger scale MSLP and also to convert the correlated variables to uncorrelated variables. Fuzzy clustering is performed to derive the membership of the principal components in each of the clusters and the memberships obtained are used in regression to statistically relate MSLP and rainfall. The statistical relationship thus obtained is used to predict the rainfall from GCM output. The rainfall predicted with the GCM developed by CCSR/NIES with B2 scenario presents a decreasing trend for…" @default.
- W1030806467 created "2016-06-24" @default.
- W1030806467 creator A5080224578 @default.
- W1030806467 date "2009-07-02" @default.
- W1030806467 modified "2023-09-27" @default.
- W1030806467 title "Hydrologic Impacts Of Climate Change : Uncertainty Modeling" @default.
- W1030806467 hasPublicationYear "2009" @default.
- W1030806467 type Work @default.
- W1030806467 sameAs 1030806467 @default.
- W1030806467 citedByCount "1" @default.
- W1030806467 crossrefType "dissertation" @default.
- W1030806467 hasAuthorship W1030806467A5080224578 @default.
- W1030806467 hasConcept C107054158 @default.
- W1030806467 hasConcept C111368507 @default.
- W1030806467 hasConcept C127313418 @default.
- W1030806467 hasConcept C132651083 @default.
- W1030806467 hasConcept C136894858 @default.
- W1030806467 hasConcept C153294291 @default.
- W1030806467 hasConcept C161067210 @default.
- W1030806467 hasConcept C168754636 @default.
- W1030806467 hasConcept C176783924 @default.
- W1030806467 hasConcept C18903297 @default.
- W1030806467 hasConcept C197435368 @default.
- W1030806467 hasConcept C205649164 @default.
- W1030806467 hasConcept C39432304 @default.
- W1030806467 hasConcept C41156917 @default.
- W1030806467 hasConcept C47665787 @default.
- W1030806467 hasConcept C47737302 @default.
- W1030806467 hasConcept C49204034 @default.
- W1030806467 hasConcept C86803240 @default.
- W1030806467 hasConcept C91586092 @default.
- W1030806467 hasConceptScore W1030806467C107054158 @default.
- W1030806467 hasConceptScore W1030806467C111368507 @default.
- W1030806467 hasConceptScore W1030806467C127313418 @default.
- W1030806467 hasConceptScore W1030806467C132651083 @default.
- W1030806467 hasConceptScore W1030806467C136894858 @default.
- W1030806467 hasConceptScore W1030806467C153294291 @default.
- W1030806467 hasConceptScore W1030806467C161067210 @default.
- W1030806467 hasConceptScore W1030806467C168754636 @default.
- W1030806467 hasConceptScore W1030806467C176783924 @default.
- W1030806467 hasConceptScore W1030806467C18903297 @default.
- W1030806467 hasConceptScore W1030806467C197435368 @default.
- W1030806467 hasConceptScore W1030806467C205649164 @default.
- W1030806467 hasConceptScore W1030806467C39432304 @default.
- W1030806467 hasConceptScore W1030806467C41156917 @default.
- W1030806467 hasConceptScore W1030806467C47665787 @default.
- W1030806467 hasConceptScore W1030806467C47737302 @default.
- W1030806467 hasConceptScore W1030806467C49204034 @default.
- W1030806467 hasConceptScore W1030806467C86803240 @default.
- W1030806467 hasConceptScore W1030806467C91586092 @default.
- W1030806467 hasLocation W10308064671 @default.
- W1030806467 hasOpenAccess W1030806467 @default.
- W1030806467 hasPrimaryLocation W10308064671 @default.
- W1030806467 hasRelatedWork W1578247653 @default.
- W1030806467 hasRelatedWork W1607372687 @default.
- W1030806467 hasRelatedWork W1642614142 @default.
- W1030806467 hasRelatedWork W1827386009 @default.
- W1030806467 hasRelatedWork W1998079050 @default.
- W1030806467 hasRelatedWork W2007356886 @default.
- W1030806467 hasRelatedWork W2068029846 @default.
- W1030806467 hasRelatedWork W2098791882 @default.
- W1030806467 hasRelatedWork W2131912939 @default.
- W1030806467 hasRelatedWork W2189471443 @default.
- W1030806467 hasRelatedWork W2313085328 @default.
- W1030806467 hasRelatedWork W2553621922 @default.
- W1030806467 hasRelatedWork W2625721059 @default.
- W1030806467 hasRelatedWork W2890076152 @default.
- W1030806467 hasRelatedWork W2910379390 @default.
- W1030806467 hasRelatedWork W2913429852 @default.
- W1030806467 hasRelatedWork W3097438315 @default.
- W1030806467 hasRelatedWork W3141356855 @default.
- W1030806467 hasRelatedWork W3205285071 @default.
- W1030806467 hasRelatedWork W608363607 @default.
- W1030806467 isParatext "false" @default.
- W1030806467 isRetracted "false" @default.
- W1030806467 magId "1030806467" @default.
- W1030806467 workType "dissertation" @default.