Matches in SemOpenAlex for { <https://semopenalex.org/work/W103439707> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W103439707 endingPage "1157" @default.
- W103439707 startingPage "1150" @default.
- W103439707 abstract "Recently the field of machine learning, pattern recognition, and data mining has witnessed a new research stream that is <i>learning with partial supervisio</i>n -LPS- (known also as <i>semi-supervised learning</i>). This learning scheme is motivated by the fact that the process of acquiring the labeling information of data could be quite costly and sometimes prone to mislabeling. The general spectrum of learning from data is envisioned in Figure 1. As shown, in many situations, the data is neither perfectly nor completely labeled.<div><br></div><div>LPS aims at using available labeled samples in order to guide the process of building classification and clustering machineries and help boost their accuracy. Basically, LPS is a combination of two learning paradigms: supervised and unsupervised where the former deals exclusively with labeled data and the latter is concerned with unlabeled data. Hence, the following questions:</div><div><br></div><div><ul><li>Can we improve supervised learning with unlabeled data? <br></li><li>Can we guide unsupervised learning by incorporating few labeled samples?<br></li></ul></div><div><br></div><div>Typical LPS applications are medical diagnosis (Bouchachia & Pedrycz, 2006a), facial expression recognition (Cohen et al., 2004), text classification (Nigam et al., 2000), protein classification (Weston et al., 2003), and several natural language processing applications such as word sense disambiguation (Niu et al., 2005), and text chunking (Ando & Zhangz, 2005).</div><div><br></div><div>Because LPS is still a young but active research field, it lacks a survey outlining the existing approaches and research trends. In this chapter, we will take a step towards an overview. We will discuss (i) the background of LPS, (iii) the main focus of our LPS research and explain the underlying assumptions behind LPS, and (iv) future directions and challenges of LPS research. </div>" @default.
- W103439707 created "2016-06-24" @default.
- W103439707 creator A5063662012 @default.
- W103439707 date "2011-05-24" @default.
- W103439707 modified "2023-09-26" @default.
- W103439707 title "Learning with Partial Supervision" @default.
- W103439707 cites W1548045513 @default.
- W103439707 cites W1554565846 @default.
- W103439707 cites W1988790447 @default.
- W103439707 cites W2061526129 @default.
- W103439707 cites W2064456383 @default.
- W103439707 cites W2072732320 @default.
- W103439707 cites W2083515729 @default.
- W103439707 cites W2088556937 @default.
- W103439707 cites W2089887406 @default.
- W103439707 cites W2097089247 @default.
- W103439707 cites W2099032804 @default.
- W103439707 cites W2106326515 @default.
- W103439707 cites W2113076747 @default.
- W103439707 cites W2118314245 @default.
- W103439707 cites W2127358574 @default.
- W103439707 cites W2138776269 @default.
- W103439707 cites W2153149612 @default.
- W103439707 cites W2164031334 @default.
- W103439707 cites W2172251087 @default.
- W103439707 doi "https://doi.org/10.4018/978-1-60566-010-3.ch179" @default.
- W103439707 hasPublicationYear "2011" @default.
- W103439707 type Work @default.
- W103439707 sameAs 103439707 @default.
- W103439707 citedByCount "1" @default.
- W103439707 crossrefType "book-chapter" @default.
- W103439707 hasAuthorship W103439707A5063662012 @default.
- W103439707 hasConcept C111919701 @default.
- W103439707 hasConcept C119857082 @default.
- W103439707 hasConcept C134306372 @default.
- W103439707 hasConcept C136389625 @default.
- W103439707 hasConcept C154945302 @default.
- W103439707 hasConcept C202444582 @default.
- W103439707 hasConcept C2776145971 @default.
- W103439707 hasConcept C33923547 @default.
- W103439707 hasConcept C41008148 @default.
- W103439707 hasConcept C50644808 @default.
- W103439707 hasConcept C58973888 @default.
- W103439707 hasConcept C73555534 @default.
- W103439707 hasConcept C77618280 @default.
- W103439707 hasConcept C8038995 @default.
- W103439707 hasConcept C9652623 @default.
- W103439707 hasConcept C98045186 @default.
- W103439707 hasConceptScore W103439707C111919701 @default.
- W103439707 hasConceptScore W103439707C119857082 @default.
- W103439707 hasConceptScore W103439707C134306372 @default.
- W103439707 hasConceptScore W103439707C136389625 @default.
- W103439707 hasConceptScore W103439707C154945302 @default.
- W103439707 hasConceptScore W103439707C202444582 @default.
- W103439707 hasConceptScore W103439707C2776145971 @default.
- W103439707 hasConceptScore W103439707C33923547 @default.
- W103439707 hasConceptScore W103439707C41008148 @default.
- W103439707 hasConceptScore W103439707C50644808 @default.
- W103439707 hasConceptScore W103439707C58973888 @default.
- W103439707 hasConceptScore W103439707C73555534 @default.
- W103439707 hasConceptScore W103439707C77618280 @default.
- W103439707 hasConceptScore W103439707C8038995 @default.
- W103439707 hasConceptScore W103439707C9652623 @default.
- W103439707 hasConceptScore W103439707C98045186 @default.
- W103439707 hasLocation W1034397071 @default.
- W103439707 hasOpenAccess W103439707 @default.
- W103439707 hasPrimaryLocation W1034397071 @default.
- W103439707 isParatext "false" @default.
- W103439707 isRetracted "false" @default.
- W103439707 magId "103439707" @default.
- W103439707 workType "book-chapter" @default.