Matches in SemOpenAlex for { <https://semopenalex.org/work/W103471815> ?p ?o ?g. }
- W103471815 abstract "In this chapter we will analyse the results available on the characterization of the Brucella transcriptome. After a summary of earlier work on transcription, two technical approaches will be mainly described, on one side the use microarrays, specially that derived from the Brucella ORFeome that allows hybridization with mRNA derived cDNA to determine the relative abundance of transcripts from each B. melitensis ORF. On the other, RNAseq, consisting in the massive sequencing of cDNA libraries derived from mRNA obtained from B. abortus grown in culture medium. Sequencing with the Illumina Genome-Analyser II platform produced 3 millions of 35-nt-long reads that annealed with single copy coding regions of the genome. This allowed a good coverage for every CDS and produced a new data set on the transcription of Brucella. We obtained a good correlation for the set of highly expressed genes from the microarrays and confirmed the observations obtained on the asymmetry between chromosome transcription. Preliminary conclusions on intracellular transcription have been drawn from real-time polymerase chain reaction (RT-PCR) on selected candidate genes and from microarray data sets obtained from virulence related conditions. The RNAseq derived data allowed more versatile data mining, giving some new details on transcription from pseudogenes or intergenic regions. Introduction During the last 50 years, to understand the mechanisms working in bacterial cells, we have applied a reductionist approach consisting in the analysis of isolated parts of the organism at different complexity levels ranging from the genetics to the three-dimensional determination of complex molecular structures. This approach has been really fruitful and undoubtedly it will be our principal source of information in the near future. Newer approaches to the study of biological systems want to analyse living organisms as a complex unit by looking at all the components of the organism as well as the interactions among them that result in an observable behaviour at the same time. This methodology is the hallmark of the field of systems biology. These procedures are being applied already into microbiology. Perhaps, the most appealing case has been the analysis of Mycoplasma, the free-living bacteria with the smallest genome (Ochman and Raghavan, 2009). After a lot of genomic data on Mycoplasma were available, a multinational team has analysed in depth the transcriptome of the bacteria using both, RNA sequencing and tiling microarrays (Guell et al., 2009). They have also studied the proteome of the bacteria, including protein interactions (Kuhner et al., 2009) and finally they have reconstructed the metabolism by analysing any metabolic pathway integrating transcriptional, proteomic and metabolic flux data sets (Yus et al., 2009). This piece of work signals the path for the study of more complex organisms using the Garcia-Lobo et al. 90 | same methodologies. Perhaps, the most important conclusion to take into account is that some classic paradigms of molecular microbiology are changing. This is mainly the case for bacterial transcription. The analysis of the transcriptome of Mycoplasma has revealed extensive transcription from both DNA strands of the same DNA, alternative transcripts from operons including only some of the operon genes, and existence of many short RNA’s usually non-detected by automatic annotation pipelines. As a desirable objective we should consider performing a similar study on Brucella. Taking into account genome size only, we expect a much more complex problem to solve. While this effort is organized, the progressive application of high throughput technologies to Brucella may build a set of data that could be later used to sketch the blueprint of our beloved bacteria. Early transcriptional analysis Application of molecular analysis to genetic information flow in Brucella started near 30 years ago. To our knowledge the first paper published on this field (that somehow inspired work of our group) was a description of mutagenesis produced by transposon Tn5 in B. abortus published in 1987 (Smith and Heffron, 1987). The first nucleotide sequences of Brucella rRNA were deposited in GenBank in 1989. Focus on transcription started soon after, targeting first surface antigen genes with a clear interest in the improvement of brucellosis vaccines and diagnostic tests. For instance, the analysis of the 36-kDa outer membrane protein gene of B. abortus, included the detection of promoter activity by fusion to LacZ, identification of Shine-Dalgarno sequences, and rho-independent terminators (Ficht et al., 1989). Besides the transcriptional analysis of a few dozens of individual genes performed in the following years, a first experiment addressing global analysis of transcription was performed by R.C. Essemberg, who made a library of Sau3AI generated DNA fragments fused to a promoter-less luciferase reporter and studied transcription arising from the cloned fragments and the effect that different sugars produced on the transcription levels. In this way fragments containing promoters with activity dependent on erythritol, glucose, galactose and succinate were detected. This work was not published, but was communicated at the Chicago Brucellosis meeting and the sequence of the cloned fragments was deposited in GenBank (accession numbers AF075168, AF072121, AF072119, AF074323, AF073884, AF072580, AF072569, AF072120, AF072570, AF072571, AF072572, AF072573, AF072574, AF072575, AF072576, AF072577, AF072578, AF072579). Methodological overview of massive transcriptomic" @default.
- W103471815 created "2016-06-24" @default.
- W103471815 creator A5014507674 @default.
- W103471815 creator A5015143914 @default.
- W103471815 creator A5020001150 @default.
- W103471815 creator A5027210626 @default.
- W103471815 creator A5053874439 @default.
- W103471815 date "2012-01-01" @default.
- W103471815 modified "2023-09-22" @default.
- W103471815 title "The exploration of Brucella transcriptome: From the ORFeome to RNAseq" @default.
- W103471815 cites W1601058961 @default.
- W103471815 cites W1899633770 @default.
- W103471815 cites W1968698890 @default.
- W103471815 cites W2009345773 @default.
- W103471815 cites W2010009494 @default.
- W103471815 cites W2016202608 @default.
- W103471815 cites W2046002778 @default.
- W103471815 cites W2047529320 @default.
- W103471815 cites W2056202864 @default.
- W103471815 cites W2062896692 @default.
- W103471815 cites W2085836949 @default.
- W103471815 cites W2085871618 @default.
- W103471815 cites W2098166937 @default.
- W103471815 cites W2100160221 @default.
- W103471815 cites W2100228967 @default.
- W103471815 cites W2100380298 @default.
- W103471815 cites W2106997302 @default.
- W103471815 cites W2110393270 @default.
- W103471815 cites W2112113834 @default.
- W103471815 cites W2117921160 @default.
- W103471815 cites W2118116571 @default.
- W103471815 cites W2122914905 @default.
- W103471815 cites W2123634400 @default.
- W103471815 cites W2123939632 @default.
- W103471815 cites W2127500277 @default.
- W103471815 cites W2128889957 @default.
- W103471815 cites W2146994504 @default.
- W103471815 cites W2151111689 @default.
- W103471815 cites W2154051090 @default.
- W103471815 cites W2155606054 @default.
- W103471815 cites W2162062929 @default.
- W103471815 cites W2165380986 @default.
- W103471815 cites W2166692823 @default.
- W103471815 cites W2170488656 @default.
- W103471815 cites W2305272355 @default.
- W103471815 cites W2332012714 @default.
- W103471815 hasPublicationYear "2012" @default.
- W103471815 type Work @default.
- W103471815 sameAs 103471815 @default.
- W103471815 citedByCount "0" @default.
- W103471815 crossrefType "journal-article" @default.
- W103471815 hasAuthorship W103471815A5014507674 @default.
- W103471815 hasAuthorship W103471815A5015143914 @default.
- W103471815 hasAuthorship W103471815A5020001150 @default.
- W103471815 hasAuthorship W103471815A5027210626 @default.
- W103471815 hasAuthorship W103471815A5053874439 @default.
- W103471815 hasConcept C104317684 @default.
- W103471815 hasConcept C138885662 @default.
- W103471815 hasConcept C141231307 @default.
- W103471815 hasConcept C150194340 @default.
- W103471815 hasConcept C162317418 @default.
- W103471815 hasConcept C179926584 @default.
- W103471815 hasConcept C187882448 @default.
- W103471815 hasConcept C34957205 @default.
- W103471815 hasConcept C41895202 @default.
- W103471815 hasConcept C54355233 @default.
- W103471815 hasConcept C70721500 @default.
- W103471815 hasConcept C86803240 @default.
- W103471815 hasConcept C95371953 @default.
- W103471815 hasConceptScore W103471815C104317684 @default.
- W103471815 hasConceptScore W103471815C138885662 @default.
- W103471815 hasConceptScore W103471815C141231307 @default.
- W103471815 hasConceptScore W103471815C150194340 @default.
- W103471815 hasConceptScore W103471815C162317418 @default.
- W103471815 hasConceptScore W103471815C179926584 @default.
- W103471815 hasConceptScore W103471815C187882448 @default.
- W103471815 hasConceptScore W103471815C34957205 @default.
- W103471815 hasConceptScore W103471815C41895202 @default.
- W103471815 hasConceptScore W103471815C54355233 @default.
- W103471815 hasConceptScore W103471815C70721500 @default.
- W103471815 hasConceptScore W103471815C86803240 @default.
- W103471815 hasConceptScore W103471815C95371953 @default.
- W103471815 hasLocation W1034718151 @default.
- W103471815 hasOpenAccess W103471815 @default.
- W103471815 hasPrimaryLocation W1034718151 @default.
- W103471815 hasRelatedWork W1567800141 @default.
- W103471815 hasRelatedWork W1864542181 @default.
- W103471815 hasRelatedWork W1965315835 @default.
- W103471815 hasRelatedWork W1995120919 @default.
- W103471815 hasRelatedWork W2040367407 @default.
- W103471815 hasRelatedWork W2045600529 @default.
- W103471815 hasRelatedWork W2048505338 @default.
- W103471815 hasRelatedWork W2068587314 @default.
- W103471815 hasRelatedWork W2071051311 @default.
- W103471815 hasRelatedWork W2114545312 @default.
- W103471815 hasRelatedWork W2123965287 @default.
- W103471815 hasRelatedWork W2154443586 @default.
- W103471815 hasRelatedWork W2158871176 @default.
- W103471815 hasRelatedWork W2186547519 @default.
- W103471815 hasRelatedWork W2586683354 @default.