Matches in SemOpenAlex for { <https://semopenalex.org/work/W103492007> ?p ?o ?g. }
- W103492007 abstract "The basic concept, formulation, background, and a panoramic view over the recent research results and open problems in the newly emerging area of research that is on the crossroads of computational intelligence and cybernetics is compressed in this short communication. Intelligent systems can be defined as systems that incorporate some form of reasoning that is typical for humans. Fuzzy Systems are well known for being able to formalize the approximate reasoning that still separates humans from machines. Artificial neural networks have proven to be a useful form of parallel processing of information that employs principles from the organization of the brain. Finally, the evolution is a phenomenon that was initially used to solve optimization problems inspired by the so called 'genetic algorithms' due to D. E. Goldberg and 'genetic programming' due to J. Koza. These types of evolutionary algorithms are mimicking the natural selection that takes place in populations of living creatures over generations. More recently, the evolution of individual systems within their life-span (self-organization, learning through experience, and self-developing) has attracted the attention. These systems called 'evolving' came as a result of the research into the development of practical on-line algorithms that work in real-time and are close to the theoretically optimal, analytical solutions, suitable for non-stationary, non-linear problems of modeling, control, prediction, classification, clustering, signal processing. Due to the limited space and the specific purpose of this communication only the basic elements of the concept will be outlined. This concept represents, in fact, a higher level adaptation that concerns model structure as well as model parameters. It can also be considered as an extension of the multi-model concept known from the control theory, and of the on-line identification of fixed structure fuzzy rule-based models. It can also be considered as an extension of the learning neural networks methods in direction of on-line applications with a structure that can grow and shrink. This new concept of 'evolving intelligent systems' can also be treated in the framework of the knowledge and data integration. Evolutionary, population/generation based computation, can be applied to optimize parameters and features of an individual system, that learns incrementally from incoming data. The specific of this paper lays in the generalization of the recent advances in the development of evolving fuzzy and neuro-fuzzy models and the more analytical angle of consideration through the prism of knowledge evolution as opposed to the usually used data-centred approach. This powerful new concept has been recently introduced by the authors in a series of parallel works and is still under intensive development. It forms the conceptual basis for the development of the truly intelligent systems. A number of applications of this technique to a range of industrial and benchmark processes have been recently reported. Due to the lack of space only some of them will be mentioned primarily with illustrative purpose." @default.
- W103492007 created "2016-06-24" @default.
- W103492007 creator A5025613105 @default.
- W103492007 creator A5039480864 @default.
- W103492007 date "2006-06-01" @default.
- W103492007 modified "2023-09-27" @default.
- W103492007 title "Evolving Intelligent Systems, eIS" @default.
- W103492007 cites W1490891821 @default.
- W103492007 cites W1492360815 @default.
- W103492007 cites W1497256448 @default.
- W103492007 cites W1498610047 @default.
- W103492007 cites W1510079525 @default.
- W103492007 cites W1523293200 @default.
- W103492007 cites W1525581429 @default.
- W103492007 cites W1563827162 @default.
- W103492007 cites W1574590662 @default.
- W103492007 cites W1576818901 @default.
- W103492007 cites W1709365188 @default.
- W103492007 cites W1808591511 @default.
- W103492007 cites W1964939572 @default.
- W103492007 cites W1965324089 @default.
- W103492007 cites W1988115241 @default.
- W103492007 cites W2005355106 @default.
- W103492007 cites W2013845289 @default.
- W103492007 cites W2016415759 @default.
- W103492007 cites W2021347076 @default.
- W103492007 cites W2022023686 @default.
- W103492007 cites W2022540271 @default.
- W103492007 cites W2055864845 @default.
- W103492007 cites W2057073240 @default.
- W103492007 cites W2058221907 @default.
- W103492007 cites W2059074889 @default.
- W103492007 cites W2064208261 @default.
- W103492007 cites W2068412200 @default.
- W103492007 cites W2070720920 @default.
- W103492007 cites W2079325629 @default.
- W103492007 cites W2081390277 @default.
- W103492007 cites W2094603430 @default.
- W103492007 cites W2103269436 @default.
- W103492007 cites W2105628133 @default.
- W103492007 cites W2105734419 @default.
- W103492007 cites W2105934661 @default.
- W103492007 cites W2116119284 @default.
- W103492007 cites W2121752810 @default.
- W103492007 cites W2132479975 @default.
- W103492007 cites W2134620325 @default.
- W103492007 cites W2136340804 @default.
- W103492007 cites W2144276202 @default.
- W103492007 cites W2150355110 @default.
- W103492007 cites W2151863350 @default.
- W103492007 cites W2152150600 @default.
- W103492007 cites W2160119870 @default.
- W103492007 cites W2162635690 @default.
- W103492007 cites W2169990839 @default.
- W103492007 cites W2170937782 @default.
- W103492007 cites W2904250082 @default.
- W103492007 cites W2912565176 @default.
- W103492007 cites W2025508676 @default.
- W103492007 cites W2119762035 @default.
- W103492007 hasPublicationYear "2006" @default.
- W103492007 type Work @default.
- W103492007 sameAs 103492007 @default.
- W103492007 citedByCount "6" @default.
- W103492007 countsByYear W1034920072012 @default.
- W103492007 countsByYear W1034920072014 @default.
- W103492007 countsByYear W1034920072016 @default.
- W103492007 countsByYear W1034920072018 @default.
- W103492007 crossrefType "journal-article" @default.
- W103492007 hasAuthorship W103492007A5025613105 @default.
- W103492007 hasAuthorship W103492007A5039480864 @default.
- W103492007 hasConcept C115286129 @default.
- W103492007 hasConcept C119857082 @default.
- W103492007 hasConcept C120665830 @default.
- W103492007 hasConcept C121332964 @default.
- W103492007 hasConcept C139807058 @default.
- W103492007 hasConcept C154945302 @default.
- W103492007 hasConcept C19273510 @default.
- W103492007 hasConcept C41008148 @default.
- W103492007 hasConcept C56397880 @default.
- W103492007 hasConcept C73555534 @default.
- W103492007 hasConcept C80444323 @default.
- W103492007 hasConceptScore W103492007C115286129 @default.
- W103492007 hasConceptScore W103492007C119857082 @default.
- W103492007 hasConceptScore W103492007C120665830 @default.
- W103492007 hasConceptScore W103492007C121332964 @default.
- W103492007 hasConceptScore W103492007C139807058 @default.
- W103492007 hasConceptScore W103492007C154945302 @default.
- W103492007 hasConceptScore W103492007C19273510 @default.
- W103492007 hasConceptScore W103492007C41008148 @default.
- W103492007 hasConceptScore W103492007C56397880 @default.
- W103492007 hasConceptScore W103492007C73555534 @default.
- W103492007 hasConceptScore W103492007C80444323 @default.
- W103492007 hasLocation W1034920071 @default.
- W103492007 hasOpenAccess W103492007 @default.
- W103492007 hasPrimaryLocation W1034920071 @default.
- W103492007 hasRelatedWork W1483540919 @default.
- W103492007 hasRelatedWork W2019207321 @default.
- W103492007 hasRelatedWork W2028063358 @default.
- W103492007 hasRelatedWork W2042184427 @default.
- W103492007 hasRelatedWork W2053592796 @default.