Matches in SemOpenAlex for { <https://semopenalex.org/work/W1035535862> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W1035535862 abstract "The heart is a fundamental aspect of the human body. Significant work has been undertaken to better understand the characteristics and mechanisms of this organ in past research. Greater understanding of the heart not onlyprovides advances in medicine but also enables practitioners to better assess the health risk of patients. This thesis approaches the study of the heart from a health informatics perspective. The questions posed in this thesis is whether research is capable of describing and modelling heart data from a statistical perspective, along with exploring techniques to improve the accuracy of clinical risk assessment algorithms that rely on this data.The contributions of this thesis may be grouped into two main areas: statistical analysis, modelling and simulation of heart data; and improved risk assessment accuracy of the Early Warning Score (EWS) algorithm using a quartile-based technique. Statistical analysis of heart data, namely RR intervals, contributes to more informed understanding of the underlying characteristics of the heart and is achieved using null-hypothesis testing through the Anderson-Darling (AD) test statistic. The modelling processof heart data demonstrates methodologies for simulation of this data type, namely individual distribution modelling and normal mixture modelling, and contributes to assessing techniques that are most capable of modelling this type of data.For improved accuracy on the EWS algorithms, a quartiles technique, inspired by anomaly-based intrusion detection systems, is presented which enables customisation of risk score thresholds for each patient defined during a training phase. Simulated heart data is used to evaluate the standard EWS algorithm against the quartile-based approach. The defined metric of accuracy ratio provides quantitative evidence on the accuracy of the standard EWS algorithm in comparison with the proposed quartile based technique.Statistical analysis in this thesis demonstrates that samples of heart data can be described using normal, Weibull, logistic and gamma distribution within the scope of two minute data samples. When there is strong evidence to suggest that RR intervals analysed fits a particular distribution, individual modelling technique is the ideal candidate whilst normal mixture modelling is better suited for long-term modelling, i.e. greater than two minutes of heart data. In comparative evaluation of the standard EWS algorithm and the quartile-based technique using modelled heart data, greater accuracy is demonstrated in the quartiles-based technique for patients whose heart rate is healthy, but outside the normal ranges of the general population." @default.
- W1035535862 created "2016-06-24" @default.
- W1035535862 creator A5023024505 @default.
- W1035535862 date "2015-05-01" @default.
- W1035535862 modified "2023-09-24" @default.
- W1035535862 title "Heart data analysis, modelling and application in risk assessment." @default.
- W1035535862 hasPublicationYear "2015" @default.
- W1035535862 type Work @default.
- W1035535862 sameAs 1035535862 @default.
- W1035535862 citedByCount "0" @default.
- W1035535862 crossrefType "dissertation" @default.
- W1035535862 hasAuthorship W1035535862A5023024505 @default.
- W1035535862 hasConcept C105795698 @default.
- W1035535862 hasConcept C120894424 @default.
- W1035535862 hasConcept C124101348 @default.
- W1035535862 hasConcept C2522767166 @default.
- W1035535862 hasConcept C33923547 @default.
- W1035535862 hasConcept C40696583 @default.
- W1035535862 hasConcept C41008148 @default.
- W1035535862 hasConcept C44249647 @default.
- W1035535862 hasConcept C68443243 @default.
- W1035535862 hasConcept C87007009 @default.
- W1035535862 hasConcept C89128539 @default.
- W1035535862 hasConceptScore W1035535862C105795698 @default.
- W1035535862 hasConceptScore W1035535862C120894424 @default.
- W1035535862 hasConceptScore W1035535862C124101348 @default.
- W1035535862 hasConceptScore W1035535862C2522767166 @default.
- W1035535862 hasConceptScore W1035535862C33923547 @default.
- W1035535862 hasConceptScore W1035535862C40696583 @default.
- W1035535862 hasConceptScore W1035535862C41008148 @default.
- W1035535862 hasConceptScore W1035535862C44249647 @default.
- W1035535862 hasConceptScore W1035535862C68443243 @default.
- W1035535862 hasConceptScore W1035535862C87007009 @default.
- W1035535862 hasConceptScore W1035535862C89128539 @default.
- W1035535862 hasLocation W10355358621 @default.
- W1035535862 hasOpenAccess W1035535862 @default.
- W1035535862 hasPrimaryLocation W10355358621 @default.
- W1035535862 hasRelatedWork W1586038666 @default.
- W1035535862 hasRelatedWork W159446680 @default.
- W1035535862 hasRelatedWork W2066210490 @default.
- W1035535862 hasRelatedWork W2165919991 @default.
- W1035535862 hasRelatedWork W2318488372 @default.
- W1035535862 hasRelatedWork W23636738 @default.
- W1035535862 hasRelatedWork W2528545823 @default.
- W1035535862 hasRelatedWork W2766919477 @default.
- W1035535862 hasRelatedWork W2840213810 @default.
- W1035535862 hasRelatedWork W2889031724 @default.
- W1035535862 hasRelatedWork W2940480458 @default.
- W1035535862 hasRelatedWork W2954044685 @default.
- W1035535862 hasRelatedWork W2986613416 @default.
- W1035535862 hasRelatedWork W3034021133 @default.
- W1035535862 hasRelatedWork W3034453970 @default.
- W1035535862 hasRelatedWork W3038098604 @default.
- W1035535862 hasRelatedWork W3039602777 @default.
- W1035535862 hasRelatedWork W3117877229 @default.
- W1035535862 isParatext "false" @default.
- W1035535862 isRetracted "false" @default.
- W1035535862 magId "1035535862" @default.
- W1035535862 workType "dissertation" @default.