Matches in SemOpenAlex for { <https://semopenalex.org/work/W1036184611> ?p ?o ?g. }
- W1036184611 endingPage "118" @default.
- W1036184611 startingPage "95" @default.
- W1036184611 abstract "The present chapter is devoted to the study of integral domains having two other kinds of ideal factorization. An integral domain is said to have strong pseudo-Dedekind factorization if each proper ideal can be factored as the product of an invertible ideal (possibly equal to the ring) and a finite product of pairwise comaximal prime ideals with at least one prime in the product. On the other hand, an integral domain is said to have pseudo-Dedekind factorization if each nonzero noninvertible ideal can be factored as the product of an invertible ideal (which might be equal to the ring) and finitely many pairwise comaximal primes. We observe that an integral domain with pseudo-Dedekind factorization has strong factorization (Sect. 4.1) and an integrally closed domain with pseudo-Dedekind factorization is an h-local Prüfer domain. Nonintegrally closed local domains with pseudo-Dedekind factorization are fully described in terms of pullbacks of valuation domains. Several characterizations of integral domains with strong pseudo-Dedekind factorization are also given. In particular, we show that an integral domain has strong pseudo-Dedekind factorization if and only if it is an h-local generalized Dedekind domain. Finally, we investigate the ascent and descent of several types of ideal factorizations from an integral domain R to the Nagata ring R(X) and vice versa." @default.
- W1036184611 created "2016-06-24" @default.
- W1036184611 creator A5011853258 @default.
- W1036184611 creator A5014298843 @default.
- W1036184611 creator A5088518192 @default.
- W1036184611 date "2012-01-01" @default.
- W1036184611 modified "2023-10-16" @default.
- W1036184611 title "Pseudo-Dedekind and Strong Pseudo-Dedekind Factorization" @default.
- W1036184611 cites W1499065554 @default.
- W1036184611 cites W1784546406 @default.
- W1036184611 cites W1989163321 @default.
- W1036184611 cites W1989817089 @default.
- W1036184611 cites W1996344980 @default.
- W1036184611 cites W2000361236 @default.
- W1036184611 cites W2001230192 @default.
- W1036184611 cites W2004023724 @default.
- W1036184611 cites W2005998869 @default.
- W1036184611 cites W2012559575 @default.
- W1036184611 cites W2013779718 @default.
- W1036184611 cites W2014889993 @default.
- W1036184611 cites W2014911666 @default.
- W1036184611 cites W2015780099 @default.
- W1036184611 cites W2017382943 @default.
- W1036184611 cites W2023150117 @default.
- W1036184611 cites W2026121019 @default.
- W1036184611 cites W2026909876 @default.
- W1036184611 cites W2028982206 @default.
- W1036184611 cites W2029797471 @default.
- W1036184611 cites W2032102388 @default.
- W1036184611 cites W2032243718 @default.
- W1036184611 cites W2034829496 @default.
- W1036184611 cites W2038681572 @default.
- W1036184611 cites W2044769080 @default.
- W1036184611 cites W2046079177 @default.
- W1036184611 cites W2046980926 @default.
- W1036184611 cites W2051149894 @default.
- W1036184611 cites W2052227197 @default.
- W1036184611 cites W2057360327 @default.
- W1036184611 cites W2059805326 @default.
- W1036184611 cites W2068779735 @default.
- W1036184611 cites W2069985930 @default.
- W1036184611 cites W2071333119 @default.
- W1036184611 cites W2073976351 @default.
- W1036184611 cites W2076124922 @default.
- W1036184611 cites W2087280426 @default.
- W1036184611 cites W2090329978 @default.
- W1036184611 cites W2093285336 @default.
- W1036184611 cites W2094537618 @default.
- W1036184611 cites W2095522817 @default.
- W1036184611 cites W2154024475 @default.
- W1036184611 cites W2256244099 @default.
- W1036184611 cites W2316396767 @default.
- W1036184611 cites W2320336703 @default.
- W1036184611 cites W2322706357 @default.
- W1036184611 cites W2476073584 @default.
- W1036184611 cites W2944584837 @default.
- W1036184611 cites W2945170699 @default.
- W1036184611 cites W2962760868 @default.
- W1036184611 cites W4206426623 @default.
- W1036184611 cites W4210657006 @default.
- W1036184611 cites W4210775579 @default.
- W1036184611 cites W4212915462 @default.
- W1036184611 cites W4213260579 @default.
- W1036184611 cites W4231583839 @default.
- W1036184611 cites W4241612323 @default.
- W1036184611 cites W4248796253 @default.
- W1036184611 cites W4379512913 @default.
- W1036184611 cites W4379513018 @default.
- W1036184611 doi "https://doi.org/10.1007/978-3-642-31712-5_5" @default.
- W1036184611 hasPublicationYear "2012" @default.
- W1036184611 type Work @default.
- W1036184611 sameAs 1036184611 @default.
- W1036184611 citedByCount "0" @default.
- W1036184611 crossrefType "book-chapter" @default.
- W1036184611 hasAuthorship W1036184611A5011853258 @default.
- W1036184611 hasAuthorship W1036184611A5014298843 @default.
- W1036184611 hasAuthorship W1036184611A5088518192 @default.
- W1036184611 hasConcept C111472728 @default.
- W1036184611 hasConcept C11413529 @default.
- W1036184611 hasConcept C134306372 @default.
- W1036184611 hasConcept C138885662 @default.
- W1036184611 hasConcept C183606055 @default.
- W1036184611 hasConcept C185592164 @default.
- W1036184611 hasConcept C187834632 @default.
- W1036184611 hasConcept C200802036 @default.
- W1036184611 hasConcept C202444582 @default.
- W1036184611 hasConcept C2524010 @default.
- W1036184611 hasConcept C2776639384 @default.
- W1036184611 hasConcept C33923547 @default.
- W1036184611 hasConcept C36503486 @default.
- W1036184611 hasConcept C76449584 @default.
- W1036184611 hasConcept C90673727 @default.
- W1036184611 hasConcept C9652623 @default.
- W1036184611 hasConcept C98486379 @default.
- W1036184611 hasConceptScore W1036184611C111472728 @default.
- W1036184611 hasConceptScore W1036184611C11413529 @default.
- W1036184611 hasConceptScore W1036184611C134306372 @default.
- W1036184611 hasConceptScore W1036184611C138885662 @default.