Matches in SemOpenAlex for { <https://semopenalex.org/work/W103629673> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W103629673 endingPage "116" @default.
- W103629673 startingPage "116" @default.
- W103629673 abstract "Timely diagnosis of liver cirrhosis is vital for preventing further liver damage and giving the patient the chance of transplantation. Although biopsy of the liver is the gold standard for cirrhosis assessment, it has some risks and limitations and this has led to the development of new noninvasive methods to determine the stage and prognosis of the patients. We aimed to design an artificial neural network (ANN) model to diagnose cirrhosis patients with non-alcoholic fatty liver disease (NAFLD) using routine laboratory data.Data were collected from 392 patients with NAFLD by the Middle East Research Center in Tehran. Demographic variables, history of diabetes, INR, complete blood count, albumin, ALT, AST and other routine laboratory tests, examinations and medical history were gathered. Relevant variables were selected by means of feature extraction algorithm (Knime software) and were accredited by the experts. A neural network was developed using the MATLAB software.The best obtained model was developed with two layers, eight neurons and TANSIG and PURLIN functions for layer one and output layer, respectively. The sensitivity and specificity of the model were 86.6% and 92.7%, respectively.The results of this study revealed that the neural network modeling may be able to provide a simple, noninvasive and accurate method for diagnosing cirrhosis only based on routine laboratory data." @default.
- W103629673 created "2016-06-24" @default.
- W103629673 creator A5018677961 @default.
- W103629673 creator A5019820122 @default.
- W103629673 creator A5064865578 @default.
- W103629673 creator A5067653515 @default.
- W103629673 creator A5081689734 @default.
- W103629673 date "2014-01-01" @default.
- W103629673 modified "2023-10-16" @default.
- W103629673 title "A diagnostic model for cirrhosis in patients with non-alcoholic fatty liver disease: an artificial neural network approach." @default.
- W103629673 cites W124629821 @default.
- W103629673 cites W1494969548 @default.
- W103629673 cites W16215465 @default.
- W103629673 cites W1971969055 @default.
- W103629673 cites W1981330988 @default.
- W103629673 cites W1990938316 @default.
- W103629673 cites W1993794153 @default.
- W103629673 cites W2016293185 @default.
- W103629673 cites W2034619043 @default.
- W103629673 cites W2046655072 @default.
- W103629673 cites W2048003783 @default.
- W103629673 cites W2060556645 @default.
- W103629673 cites W2073535645 @default.
- W103629673 cites W2096044851 @default.
- W103629673 cites W2097692976 @default.
- W103629673 cites W2121704243 @default.
- W103629673 cites W2123856468 @default.
- W103629673 cites W2133294251 @default.
- W103629673 cites W2133750336 @default.
- W103629673 cites W4211260107 @default.
- W103629673 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4313459" @default.
- W103629673 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25678995" @default.
- W103629673 hasPublicationYear "2014" @default.
- W103629673 type Work @default.
- W103629673 sameAs 103629673 @default.
- W103629673 citedByCount "3" @default.
- W103629673 countsByYear W1036296732015 @default.
- W103629673 countsByYear W1036296732021 @default.
- W103629673 countsByYear W1036296732022 @default.
- W103629673 crossrefType "journal-article" @default.
- W103629673 hasAuthorship W103629673A5018677961 @default.
- W103629673 hasAuthorship W103629673A5019820122 @default.
- W103629673 hasAuthorship W103629673A5064865578 @default.
- W103629673 hasAuthorship W103629673A5067653515 @default.
- W103629673 hasAuthorship W103629673A5081689734 @default.
- W103629673 hasConcept C119857082 @default.
- W103629673 hasConcept C126322002 @default.
- W103629673 hasConcept C2777075537 @default.
- W103629673 hasConcept C2777214474 @default.
- W103629673 hasConcept C2777575235 @default.
- W103629673 hasConcept C2778772119 @default.
- W103629673 hasConcept C2779134260 @default.
- W103629673 hasConcept C2779609443 @default.
- W103629673 hasConcept C2911091166 @default.
- W103629673 hasConcept C40993552 @default.
- W103629673 hasConcept C41008148 @default.
- W103629673 hasConcept C50644808 @default.
- W103629673 hasConcept C71924100 @default.
- W103629673 hasConcept C90924648 @default.
- W103629673 hasConceptScore W103629673C119857082 @default.
- W103629673 hasConceptScore W103629673C126322002 @default.
- W103629673 hasConceptScore W103629673C2777075537 @default.
- W103629673 hasConceptScore W103629673C2777214474 @default.
- W103629673 hasConceptScore W103629673C2777575235 @default.
- W103629673 hasConceptScore W103629673C2778772119 @default.
- W103629673 hasConceptScore W103629673C2779134260 @default.
- W103629673 hasConceptScore W103629673C2779609443 @default.
- W103629673 hasConceptScore W103629673C2911091166 @default.
- W103629673 hasConceptScore W103629673C40993552 @default.
- W103629673 hasConceptScore W103629673C41008148 @default.
- W103629673 hasConceptScore W103629673C50644808 @default.
- W103629673 hasConceptScore W103629673C71924100 @default.
- W103629673 hasConceptScore W103629673C90924648 @default.
- W103629673 hasLocation W1036296731 @default.
- W103629673 hasOpenAccess W103629673 @default.
- W103629673 hasPrimaryLocation W1036296731 @default.
- W103629673 hasRelatedWork W2004523293 @default.
- W103629673 hasRelatedWork W2043081109 @default.
- W103629673 hasRelatedWork W2054414957 @default.
- W103629673 hasRelatedWork W2060846451 @default.
- W103629673 hasRelatedWork W2301284828 @default.
- W103629673 hasRelatedWork W2751842630 @default.
- W103629673 hasRelatedWork W2789990346 @default.
- W103629673 hasRelatedWork W2793779340 @default.
- W103629673 hasRelatedWork W2794884479 @default.
- W103629673 hasRelatedWork W3125479117 @default.
- W103629673 hasVolume "28" @default.
- W103629673 isParatext "false" @default.
- W103629673 isRetracted "false" @default.
- W103629673 magId "103629673" @default.
- W103629673 workType "article" @default.