Matches in SemOpenAlex for { <https://semopenalex.org/work/W103689344> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W103689344 abstract "Hyperspectral imagery (HSI) has emerged as a valuable tool supporting numerous military and commercial missions. Environmental and other effects diminish HSI classification accuracy. Thus there is a desire to create robust classifiers that perform well in all possible environments. Robust parameter design (RPD) techniques have been applied to determine optimal operating settings. Previous RPD efforts considered an HSI image as categorical noise. This paper presents a novel method utilizing discrete and continuous image characteristics as representations of the noise present. Specifically, the number of clusters, fisher ratio and percent of target pixels were used to generate image training and test sets. Replacing categorical noise with the new image characteristics improves RPD results by correctly accounting for significant terms in the regression model that were otherwise considered categorical factors. Further, traditional RPD assumptions of independent noise variables are invalid for the selected HSI images. Introduction: Hyperspectral imagery (HSI) has emerged as a valuable tool supporting numerous military and commercial missions including counter concealment, camouflage and deception, combat search and rescue, counter narcotics, cartography and meteorology to name a few (Manolakis (2002); Landgrebe (2003)). A hyperspectral image, also called an image cube, consists of k spectral bands of an m by n spatial pixel representation of a sensed area. Each pixel in the spectral dimension represents an intensity of energy reflected back to the sensor. All spectral dimensions for a given pixel represent a potential target signature. HSI, by its very nature, can provide a method for identifying at most (n 1) unique spectral signals, where n is the number of independent bands in an HSI image cube. This is (n 1) rather than n because one band is used to define the background or noise present in an image. Since HSI contains typically hundreds of bands, this number of signals or targets for classification can be large although bands affected by atmospheric absorption contain little useful information and must be removed and bands that are close to each other are typically correlated. Davis (2009) describes some pitfalls when performing target classification on hyperspectral images. For instance, the spectral library will most often not contain every possible object, manmade or other to be classified. Some objects may be concealed or disguised to make the spectral signature different from what is contained in the library. In addition, environmental effects such as time of day, relative humidity and imaging angle greatly impact the data reflectance values observed by a sensor. Finally, target prior probabilities can be very small in comparison to the number of pixels being considered." @default.
- W103689344 created "2016-06-24" @default.
- W103689344 creator A5030903360 @default.
- W103689344 creator A5072710973 @default.
- W103689344 creator A5083413311 @default.
- W103689344 date "2010-01-01" @default.
- W103689344 modified "2023-09-24" @default.
- W103689344 title "Modeling Noise in a Framework to Optimize the Detection of Anomalies in Hyperspectral Imaging" @default.
- W103689344 cites W1546863579 @default.
- W103689344 cites W1585610988 @default.
- W103689344 cites W1855923485 @default.
- W103689344 cites W2044771513 @default.
- W103689344 cites W2067782748 @default.
- W103689344 cites W2106256669 @default.
- W103689344 cites W265936127 @default.
- W103689344 cites W3047725857 @default.
- W103689344 cites W319021156 @default.
- W103689344 cites W628438000 @default.
- W103689344 doi "https://doi.org/10.1115/1.859599.paper64" @default.
- W103689344 hasPublicationYear "2010" @default.
- W103689344 type Work @default.
- W103689344 sameAs 103689344 @default.
- W103689344 citedByCount "3" @default.
- W103689344 countsByYear W1036893442015 @default.
- W103689344 countsByYear W1036893442019 @default.
- W103689344 crossrefType "book-chapter" @default.
- W103689344 hasAuthorship W103689344A5030903360 @default.
- W103689344 hasAuthorship W103689344A5072710973 @default.
- W103689344 hasAuthorship W103689344A5083413311 @default.
- W103689344 hasConcept C115961682 @default.
- W103689344 hasConcept C119857082 @default.
- W103689344 hasConcept C153180895 @default.
- W103689344 hasConcept C154945302 @default.
- W103689344 hasConcept C159078339 @default.
- W103689344 hasConcept C160633673 @default.
- W103689344 hasConcept C176641082 @default.
- W103689344 hasConcept C205649164 @default.
- W103689344 hasConcept C2776196576 @default.
- W103689344 hasConcept C31972630 @default.
- W103689344 hasConcept C41008148 @default.
- W103689344 hasConcept C5274069 @default.
- W103689344 hasConcept C5457282 @default.
- W103689344 hasConcept C62649853 @default.
- W103689344 hasConcept C99498987 @default.
- W103689344 hasConceptScore W103689344C115961682 @default.
- W103689344 hasConceptScore W103689344C119857082 @default.
- W103689344 hasConceptScore W103689344C153180895 @default.
- W103689344 hasConceptScore W103689344C154945302 @default.
- W103689344 hasConceptScore W103689344C159078339 @default.
- W103689344 hasConceptScore W103689344C160633673 @default.
- W103689344 hasConceptScore W103689344C176641082 @default.
- W103689344 hasConceptScore W103689344C205649164 @default.
- W103689344 hasConceptScore W103689344C2776196576 @default.
- W103689344 hasConceptScore W103689344C31972630 @default.
- W103689344 hasConceptScore W103689344C41008148 @default.
- W103689344 hasConceptScore W103689344C5274069 @default.
- W103689344 hasConceptScore W103689344C5457282 @default.
- W103689344 hasConceptScore W103689344C62649853 @default.
- W103689344 hasConceptScore W103689344C99498987 @default.
- W103689344 hasLocation W1036893441 @default.
- W103689344 hasOpenAccess W103689344 @default.
- W103689344 hasPrimaryLocation W1036893441 @default.
- W103689344 hasRelatedWork W2050084805 @default.
- W103689344 hasRelatedWork W2062222331 @default.
- W103689344 hasRelatedWork W2206772355 @default.
- W103689344 hasRelatedWork W2297036979 @default.
- W103689344 hasRelatedWork W2415095863 @default.
- W103689344 hasRelatedWork W2498675177 @default.
- W103689344 hasRelatedWork W2531109140 @default.
- W103689344 hasRelatedWork W2804886167 @default.
- W103689344 hasRelatedWork W2899083581 @default.
- W103689344 hasRelatedWork W2919732894 @default.
- W103689344 hasRelatedWork W2949834766 @default.
- W103689344 hasRelatedWork W2991454840 @default.
- W103689344 hasRelatedWork W3017370955 @default.
- W103689344 hasRelatedWork W3114923132 @default.
- W103689344 hasRelatedWork W3131734816 @default.
- W103689344 hasRelatedWork W3139312239 @default.
- W103689344 hasRelatedWork W3197797041 @default.
- W103689344 hasRelatedWork W3199582608 @default.
- W103689344 hasRelatedWork W49749729 @default.
- W103689344 hasRelatedWork W2952852493 @default.
- W103689344 isParatext "false" @default.
- W103689344 isRetracted "false" @default.
- W103689344 magId "103689344" @default.
- W103689344 workType "book-chapter" @default.