Matches in SemOpenAlex for { <https://semopenalex.org/work/W1040461310> ?p ?o ?g. }
Showing items 1 to 44 of
44
with 100 items per page.
- W1040461310 endingPage "321" @default.
- W1040461310 startingPage "315" @default.
- W1040461310 abstract "This chapter discusses future trends of data mining and predictive analytics. Text mining holds considerable promise for applied public safety and security mining and analysis. The ability to tap directly into and use unstructured narrative data will be game changing in many ways. Most analysts understand the value represented in those resources; however, the work required to manually extract that information and recode it is extremely time consuming and generally not as accurate as automated methods. The chapter emphasizes that in very near future, the development of public safety and security-specific glossaries that will incorporate the unique lexicon and terms associated with law-enforcement and intelligence analysis. The sharp organizations on the cutting edge of analytics have acquired and maintain the ability to integrate different data resources and exploit new technologies as soon as they become available. Although, it is unclear what challenges future will present, the paradigm shift associated with incorporating business tools and analysis in crime and intelligence analysis, has been absolutely amazing, and analysts are an incredibly resourceful group out of necessity." @default.
- W1040461310 created "2016-06-24" @default.
- W1040461310 creator A5089490493 @default.
- W1040461310 date "2007-01-01" @default.
- W1040461310 modified "2023-09-23" @default.
- W1040461310 title "Future Trends" @default.
- W1040461310 doi "https://doi.org/10.1016/b978-075067796-7/50038-6" @default.
- W1040461310 hasPublicationYear "2007" @default.
- W1040461310 type Work @default.
- W1040461310 sameAs 1040461310 @default.
- W1040461310 citedByCount "0" @default.
- W1040461310 crossrefType "book-chapter" @default.
- W1040461310 hasAuthorship W1040461310A5089490493 @default.
- W1040461310 hasConcept C205649164 @default.
- W1040461310 hasConceptScore W1040461310C205649164 @default.
- W1040461310 hasLocation W10404613101 @default.
- W1040461310 hasOpenAccess W1040461310 @default.
- W1040461310 hasPrimaryLocation W10404613101 @default.
- W1040461310 hasRelatedWork W1495033600 @default.
- W1040461310 hasRelatedWork W1865157569 @default.
- W1040461310 hasRelatedWork W1883699 @default.
- W1040461310 hasRelatedWork W2189121475 @default.
- W1040461310 hasRelatedWork W2273800642 @default.
- W1040461310 hasRelatedWork W2292438761 @default.
- W1040461310 hasRelatedWork W2304569446 @default.
- W1040461310 hasRelatedWork W2359952336 @default.
- W1040461310 hasRelatedWork W2545477464 @default.
- W1040461310 hasRelatedWork W2546507225 @default.
- W1040461310 hasRelatedWork W2605453742 @default.
- W1040461310 hasRelatedWork W2808281885 @default.
- W1040461310 hasRelatedWork W2884018143 @default.
- W1040461310 hasRelatedWork W2907830956 @default.
- W1040461310 hasRelatedWork W3011050576 @default.
- W1040461310 hasRelatedWork W3102531809 @default.
- W1040461310 hasRelatedWork W3162044212 @default.
- W1040461310 hasRelatedWork W3208774271 @default.
- W1040461310 hasRelatedWork W2183350449 @default.
- W1040461310 hasRelatedWork W2185521508 @default.
- W1040461310 isParatext "false" @default.
- W1040461310 isRetracted "false" @default.
- W1040461310 magId "1040461310" @default.
- W1040461310 workType "book-chapter" @default.