Matches in SemOpenAlex for { <https://semopenalex.org/work/W1040773193> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W1040773193 endingPage "68" @default.
- W1040773193 startingPage "56" @default.
- W1040773193 abstract "Electronic health record (EHR) systems are being widely used in the healthcare industry nowadays, mostly for monitoring the progress of the patients. EHR data analysis has become a big data problem as data is growing rapidly. Using a nursing EHR system, we built predictive models for determining what factors influence pain in end-of-life (EOL) patients. Utilizing different modeling techniques, we developed coarse-grained and fine-grained models to predict patient pain outcomes. The coarse-grained models help predict the outcome at the end of each hospitalization, whereas fine-grained models help predict the outcome at the end of each shift, thus providing a trajectory of predicted outcomes over the entire hospitalization. These models can help in determining effective treatments for individuals and groups of patients and support standardization of care where appropriate. Using these models may also lower the cost and increase the quality of end-of-life care. Results from these techniques show significantly accurate predictions." @default.
- W1040773193 created "2016-06-24" @default.
- W1040773193 creator A5004627851 @default.
- W1040773193 creator A5032449155 @default.
- W1040773193 creator A5037738805 @default.
- W1040773193 creator A5050791242 @default.
- W1040773193 creator A5060316178 @default.
- W1040773193 creator A5073177802 @default.
- W1040773193 creator A5075647270 @default.
- W1040773193 date "2015-01-01" @default.
- W1040773193 modified "2023-10-16" @default.
- W1040773193 title "Predictive Modeling for End-of-Life Pain Outcome Using Electronic Health Records" @default.
- W1040773193 cites W1572483615 @default.
- W1040773193 cites W1924689489 @default.
- W1040773193 cites W1970705355 @default.
- W1040773193 cites W1972868892 @default.
- W1040773193 cites W1990445847 @default.
- W1040773193 cites W2004910511 @default.
- W1040773193 cites W2011755789 @default.
- W1040773193 cites W2029629601 @default.
- W1040773193 cites W2031648200 @default.
- W1040773193 cites W2050861833 @default.
- W1040773193 cites W2061245676 @default.
- W1040773193 cites W2132996843 @default.
- W1040773193 cites W2137325786 @default.
- W1040773193 cites W2138376272 @default.
- W1040773193 cites W2143640719 @default.
- W1040773193 cites W2169467289 @default.
- W1040773193 doi "https://doi.org/10.1007/978-3-319-20910-4_5" @default.
- W1040773193 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4975539" @default.
- W1040773193 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27500287" @default.
- W1040773193 hasPublicationYear "2015" @default.
- W1040773193 type Work @default.
- W1040773193 sameAs 1040773193 @default.
- W1040773193 citedByCount "13" @default.
- W1040773193 countsByYear W10407731932016 @default.
- W1040773193 countsByYear W10407731932017 @default.
- W1040773193 countsByYear W10407731932019 @default.
- W1040773193 countsByYear W10407731932020 @default.
- W1040773193 countsByYear W10407731932021 @default.
- W1040773193 countsByYear W10407731932022 @default.
- W1040773193 crossrefType "book-chapter" @default.
- W1040773193 hasAuthorship W1040773193A5004627851 @default.
- W1040773193 hasAuthorship W1040773193A5032449155 @default.
- W1040773193 hasAuthorship W1040773193A5037738805 @default.
- W1040773193 hasAuthorship W1040773193A5050791242 @default.
- W1040773193 hasAuthorship W1040773193A5060316178 @default.
- W1040773193 hasAuthorship W1040773193A5073177802 @default.
- W1040773193 hasAuthorship W1040773193A5075647270 @default.
- W1040773193 hasBestOaLocation W10407731932 @default.
- W1040773193 hasConcept C111919701 @default.
- W1040773193 hasConcept C119857082 @default.
- W1040773193 hasConcept C144237770 @default.
- W1040773193 hasConcept C148220186 @default.
- W1040773193 hasConcept C160735492 @default.
- W1040773193 hasConcept C162324750 @default.
- W1040773193 hasConcept C188087704 @default.
- W1040773193 hasConcept C3019952477 @default.
- W1040773193 hasConcept C33923547 @default.
- W1040773193 hasConcept C41008148 @default.
- W1040773193 hasConcept C45804977 @default.
- W1040773193 hasConcept C50522688 @default.
- W1040773193 hasConceptScore W1040773193C111919701 @default.
- W1040773193 hasConceptScore W1040773193C119857082 @default.
- W1040773193 hasConceptScore W1040773193C144237770 @default.
- W1040773193 hasConceptScore W1040773193C148220186 @default.
- W1040773193 hasConceptScore W1040773193C160735492 @default.
- W1040773193 hasConceptScore W1040773193C162324750 @default.
- W1040773193 hasConceptScore W1040773193C188087704 @default.
- W1040773193 hasConceptScore W1040773193C3019952477 @default.
- W1040773193 hasConceptScore W1040773193C33923547 @default.
- W1040773193 hasConceptScore W1040773193C41008148 @default.
- W1040773193 hasConceptScore W1040773193C45804977 @default.
- W1040773193 hasConceptScore W1040773193C50522688 @default.
- W1040773193 hasLocation W10407731931 @default.
- W1040773193 hasLocation W10407731932 @default.
- W1040773193 hasLocation W10407731933 @default.
- W1040773193 hasOpenAccess W1040773193 @default.
- W1040773193 hasPrimaryLocation W10407731931 @default.
- W1040773193 hasRelatedWork W2412019084 @default.
- W1040773193 hasRelatedWork W2472445530 @default.
- W1040773193 hasRelatedWork W2567861069 @default.
- W1040773193 hasRelatedWork W2605273552 @default.
- W1040773193 hasRelatedWork W3040868855 @default.
- W1040773193 hasRelatedWork W3108473942 @default.
- W1040773193 hasRelatedWork W3121311186 @default.
- W1040773193 hasRelatedWork W3197575923 @default.
- W1040773193 hasRelatedWork W3207061030 @default.
- W1040773193 hasRelatedWork W3208027738 @default.
- W1040773193 isParatext "false" @default.
- W1040773193 isRetracted "false" @default.
- W1040773193 magId "1040773193" @default.
- W1040773193 workType "book-chapter" @default.